Abstract

While the recent development of disease-modifying treatments for spinal muscular atrophy arose from an understanding of scheme function, the achievement of adequate motor neuron molecule availability and proprioceptive feedback has always been crucial for the preservation of function and fitness of muscle units in childhood. Progress in neuroscience research, its methods, applications, and outcomes, together with growing interest in rare diseases, has considerably improved at least the length and quality of life in subjects affected by the most severe forms of spinal muscular atrophy, and for several of those with intermediate or later-onset (or milder) forms. Therefore, what had been for a long time predominantly a familial, parent-proven strategy, aimed at the optimization of rehabilitation and caring, and at the prevention of chronic complications chronically affecting the quality of life of subjects with more severe forms of spinal muscular atrophy, has now turned into a more multidisciplinary, hospital-coordinated and longer-term vision of spinal muscular atrophy management. This paper aims to present a practical description of the tools available today for the rehabilitation and management of spinal muscular atrophy patients from a motor, orthopedic, and cardiopulmonary perspective. Disease-modifying spinal muscular atrophy treatment with real-life effects will be discussed wherever available. Spinal muscular atrophy motor function, fitness, and quality of life are highly interdependent. Hence, optimizing management in the three connected areas may help in achieving a better quality of life for the individual patient. Achieving this objective with a multidisciplinary team possibly performed in the same location with the patients might bring improvement to the patients and families involved.

Keywords

  • Machine Learning
  • Preeclampsia
  • Random Forest
  • Particle Swarm Optimization

References

  1. 1. Ganti, V. K. A. T. (2019). Data Engineering Frameworks for Optimizing Community Health Surveillance Systems. Global Journal of Medical Case Reports, 1, 1255.
  2. 2. Maguluri, K. K., & Ganti, V. K. A. T. (2019). Predictive Analytics in Biologics: Improving Production Outcomes Using Big Data.
  3. 3. Polineni, T. N. S., & Ganti, V. K. A. T. (2019). Revolutionizing Patient Care and Digital Infrastructure: Integrating Cloud Computing and Advanced Data Engineering for Industry Innovation. World, 1, 1252.
  4. 4. Chava, K., Chakilam, C., Suura, S. R., & Recharla, M. (2021). Advancing Healthcare Innovation in 2021: Integrating AI, Digital Health Technologies, and Precision Medicine for Improved Patient Outcomes. Global Journal of Medical Case Reports, 1(1), 29–41. Retrieved from https://www.scipublications.com/journal/index.php/gjmcr/article/view/1294
  5. 5. Nuka, S. T., Annapareddy, V. N., Koppolu, H. K. R., & Kannan, S. (2021). Advancements in Smart Medical and Industrial Devices: Enhancing Efficiency and Connectivity with High-Speed Telecom Networks. Open Journal of Medical Sciences, 1(1), 55–72. Retrieved from https://www.scipublications.com/journal/index.php/ojms/article/view/1295
  6. 6. Adusupalli, B., Singireddy, S., Sriram, H. K., Kaulwar, P. K., & Malempati, M. (2021). Revolutionizing Risk Assessment and Financial Ecosystems with Smart Automation, Secure Digital Solutions, and Advanced Analytical Frameworks. Universal Journal of Finance and Economics, 1(1), 101–122. Retrieved from https://www.scipublications.com/journal/index.php/ujfe/article/view/1297
  7. 7. Gadi, A. L., Kannan, S., Nandan, B. P., Komaragiri, V. B., & Singireddy, S. (2021). Advanced Computational Technologies in Vehicle Production, Digital Connectivity, and Sustainable Transportation: Innovations in Intelligent Systems, Eco-Friendly Manufacturing, and Financial Optimization. Universal Journal of Finance and Economics, 1(1), 87–100. Retrieved from https://www.scipublications.com/journal/index.php/ujfe/article/view/1296
  8. 8. Singireddy, J., Dodda, A., Burugulla, J. K. R., Paleti, S., & Challa, K. (2021). Innovative Financial Technologies: Strengthening Compliance, Secure Transactions, and Intelligent Advisory Systems Through AI-Driven Automation and Scalable Data Architectures. Universal Journal of Finance and Economics, 1(1), 123–143. Retrieved from https://www.scipublications.com/journal/index.php/ujfe/article/view/1298
  9. 9. Anil Lokesh Gadi. (2021). The Future of Automotive Mobility: Integrating Cloud-Based Connected Services for Sustainable and Autonomous Transportation. International Journal on Recent and Innovation Trends in Computing and Communication, 9(12), 179–187. Retrieved from https://ijritcc.org/index.php/ijritcc/article/view/11557
  10. 10. Balaji Adusupalli. (2021). Multi-Agent Advisory Networks: Redefining Insurance Consulting with Collaborative Agentic AI Systems. Journal of International Crisis and Risk Communication Research , 45–67. Retrieved from https://jicrcr.com/index.php/jicrcr/article/view/2969
  11. 11. Pallav Kumar Kaulwar. (2021). From Code to Counsel: Deep Learning and Data Engineering Synergy for Intelligent Tax Strategy Generation. Journal of International Crisis and Risk Communication Research , 1–20. Retrieved from https://jicrcr.com/index.php/jicrcr/article/view/2967
  12. 12. Somepalli, S., & Siramgari, D. (2020). Unveiling the Power of Granular Data: Enhancing Holistic Analysis in Utility Management. Zenodo. https://doi.org/10.5281/ZENODO.14436211
  13. 13. Ganesan, P. (2021). Leveraging NLP and AI for Advanced Chatbot Automation in Mobile and Web Applications. European Journal of Advances in Engineering and Technology, 8(3), 80-83.
  14. 14. Somepalli, S. (2019). Navigating the Cloudscape: Tailoring SaaS, IaaS, and PaaS Solutions to Optimize Water, Electricity, and Gas Utility Operations. Zenodo. https://doi.org/10.5281/ZENODO.14933534
  15. 15. Ganesan, P. (2021). Cloud Migration Techniques for Enhancing Critical Public Services: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities. Journal of Scientific and Engineering Research, 8(8), 236-244.
  16. 16. Somepalli, S. (2021). Dynamic Pricing and its Impact on the Utility Industry: Adoption and Benefits. Zenodo. https://doi.org/10.5281/ZENODO.14933981
  17. 17. Ganesan, P. (2020). Balancing Ethics in AI: Overcoming Bias, Enhancing Transparency, and Ensuring Accountability. North American Journal of Engineering Research, 1(1).
  18. 18. Satyaveda Somepalli. (2020). Modernizing Utility Metering Infrastructure: Exploring Cost-Effective Solutions for Enhanced Efficiency. European Journal of Advances in Engineering and Technology. https://doi.org/10.5281/ZENODO.13837482
  19. 19. Ganesan, P. (2020). PUBLIC CLOUD IN MULTI-CLOUD STRATEGIES INTEGRATION AND MANAGEMENT.
  20. 20. Chinta, P. C. R., & Katnapally, N. (2021). Neural Network-Based Risk Assessment for Cybersecurity in Big Data-Oriented ERP Infrastructures. Neural Network-Based Risk Assessment for Cybersecurity in Big Data-Oriented ERP Infrastructures.
  21. 21. Katnapally, N., Chinta, P. C. R., Routhu, K. K., Velaga, V., Bodepudi, V., & Karaka, L. M. (2021). Leveraging Big Data Analytics and Machine Learning Techniques for Sentiment Analysis of Amazon Product Reviews in Business Insights. American Journal of Computing and Engineering, 4(2), 35-51.
  22. 22. Routhu, K., Bodepudi, V., Jha, K. M., & Chinta, P. C. R. (2020). A Deep Learning Architectures for Enhancing Cyber Security Protocols in Big Data Integrated ERP Systems. Available at SSRN 5102662.
  23. 23. Karaka, L. M. (2021). Optimising Product Enhancements Strategic Approaches to Managing Complexity. Available at SSRN 5147875.
  24. 24. Katnapally, N., Murthy, L., & Sakuru, M. (2021). Automating Cyber Threat Response Using Agentic AI and Reinforcement Learning Techniques. J. Electrical Systems, 17(4), 138-148.