Abstract
Big Data frameworks enable rigorous, evidence-based climate pattern analysis through structured data handling, scalable computation, and reproducible methodologies. Climate pattern analysis aims to identify significant climate patterns that affect the behavior of the climate system, estimate their risk, and qualify their spatiotemporal changes. The analysis of big data requires studies to address aspects such as the volume of data generated by sources with high temporal and spatial resolutions, the velocity of processing to produce timely information, the quantitative handling of all available datasets of different origins and natures, and the veracity of results. These data-acquisition aspects including the workflows, the quality-control protocols, the production of metadata following standards, and the management of in-situ stations according to the principles of the Global Climate Observing System are critical for building confidence in pattern analysis. In addition to elaborate methodology for producing big data, Machine learning and Statistical inference can be combined to explore and quantify risk of extreme weather events related to big data patterns. When coupled with fast and efficient simulation models able to go beyond multiple real-world observations of patterns and able to quantify uncertainty, this machine Learning + Climate Science approach represents a true data explosion to develop, monitor and validate future generation warning systems for extreme weather patterns. But even the pioneering research on the ocean-atmosphere interactions patterns responsible for climate variabilities of El Niño, La Niña etc. and the open oceanic couplings of the Mixd Layer and gyres have benefited from diving into the Big Data era of Climate.Keywords
- Big Data Climate Analytics
- Climate Pattern Analysis
- Spatiotemporal Climate Variability
- Scalable D
References
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283.
- Machine Learning Applications in Regulatory Compliance Monitoring for Industrial Operations. (2020). Global Research Development(GRD) ISSN: 2455-5703, 5(12), 75-95. https://doi.org/10.70179/tqqm2y82.
- Allen, M. R., & Stott, P. A. (2003). Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dynamics, 21(5–6), 477–491.
- Dwaraka Nath Kummari, Srinivasa Rao Challa, "Big Data and Machine Learning in Fraud Detection for Public Sector Financial Systems," International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), DOI: 10.17148/IJARCCE.2020.91221.
- Babcock, J., Bekkerman, R., & Bilenko, M. (2018). Machine learning and data mining for climate science. ACM Computing Surveys, 50(3), 1–36.
- Goutham Kumar Sheelam, Botlagunta Preethish Nandan, "Machine Learning Integration in Semiconductor Research and Manufacturing Pipelines," International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), DOI: 10.17148/IJARCCE.2021.101274.
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
- Nandan, B. P., Sheelam, G. K., & Engineer Sr, I. D. Data-Driven Design and Validation Techniques in Advanced Chip Engineering.
- Easterbrook, S. M. (2014). Climate science: A grand challenge for scientific software. IEEE Software, 31(3), 14–16.
- Meda, R. End-to-End Data Engineering for Demand Forecasting in Retail Manufacturing Ecosystems.y. Proceedings of the National Academy of Sciences, 110(30), 12219–12224.
- Gebbie, G., & Huybers, P. (2019). The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and data sparsity. Journal of Physical Oceanography, 49(4), 997–1016.
- Meda, R. (2019). Machine Learning Models for Quality Prediction and Compliance in Paint Manufacturing Operations. International Journal of Engineering and Computer Science, 8(12), 24993–24911. https://doi.org/10.18535/ijecs.v8i12.4445.
- Giorgi, F., & Gutowski, W. J. (2015). Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources, 40, 467–490.
- Inala, R. Designing Scalable Technology Architectures for Customer Data in Group Insurance and Investment Platforms.
- Grolinger, K., L’Heureux, A., Capretz, M. A. M., & Seewald, L. (2016). Energy forecasting for event venues: Big data and prediction accuracy. IEEE Access, 4, 7419–7430.
- Aitha, A. R. (2021). Optimizing Data Warehousing for Large Scale Policy Management Using Advanced ETL Frameworks.
- Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A., … Zhang, X. (2007). Understanding and attributing climate change. In S. Solomon et al. (Eds.), Climate change 2007: The physical science basis (pp. 663–745). Cambridge University Press.
- Segireddy, A. R. (2021). Containerization and Microservices in Payment Systems: A Study of Kubernetes and Docker in Financial Applications. Universal Journal of Business and Management, 1(1), 1–17. Retrieved from https://www.scipublications.com/journal/index.php/ujbm/article/view/1352.
- Horel, J. D., Skokan, C., Xu, Q., & Snyder, C. (2002). Mesoscale data assimilation for prediction. Bulletin of the American Meteorological Society, 83(2), 195–212.
- Segireddy, A. R. (2020). Cloud Migration Strategies for High-Volume Financial Messaging Systems.
- IPCC. (2013). Climate change 2013: The physical science basis. Cambridge University Press.
- Gottimukkala, V. R. R. (2021). Digital Signal Processing Challenges in Financial Messaging Systems: Case Studies in High-Volume SWIFT Flows.
- Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge University Press.
- Pamisetty, A. (2021). A comparative study of cloud platforms for scalable infrastructure in food distribution supply chains.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
- Keerthi Amistapuram, "Energy-Efficient System Design for High-Volume Insurance Applications in Cloud-Native Environments," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), DOI 10.17148/IJIREEICE.2020.81209.
- Overpeck, J. T., Meehl, G. A., Bony, S., & Easterling, D. R. (2011). Climate data challenges in the 21st century. Science, 331(6018), 700–702.
- Rongali, S. K. (2021). Cloud-Native API-Led Integration Using MuleSoft and .NET for Scalable Healthcare Interoperability. Available at SSRN 5814563.
- Ribes, A., & Terray, L. (2013). Application of regularized optimal fingerprinting to attribution. Climate Dynamics, 41(9–10), 2747–2765.
- Burugulla, J. K. R. (2020). The Role of Cloud Computing in Scaling Secure Payment Infrastructures for Digital Finance. Global Research Development (GRD) ISSN: 2455-5703, 5(12).
- Shortridge, A., & Messina, J. (2011). Spatial structure and landscape associations of climate extremes. International Journal of Climatology, 31(2), 171–186.
- Kummari, D. N. (2021). A Framework for Risk-Based Auditing in Intelligent Manufacturing Infrastructures. International Journal on Recent and Innovation Trends in Computing and Communication, 9(12), 245-262.
- Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.
- Botlagunta, P. N., & Sheelam, G. K. (2020). Data-Driven Design and Validation Techniques in Advanced Chip Engineering. Global Research Development (GRD) ISSN: 2455-5703, 5(12), 243-260.
- Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., … Leonard, M. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469–477.
- Meda, R. (2020). Data Engineering Architectures for Real-Time Quality Monitoring in Paint Production Lines. International Journal Of Engineering And Computer Science, 9(12).
- Inala, R. (2021). A New Paradigm in Retirement Solution Platforms: Leveraging Data Governance to Build AI-Ready Data Products. Journal of International Crisis and Risk Communication Research, 286-310.
- Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., … Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), D05109.
- Inala, R. (2020). Building Foundational Data Products for Financial Services: A MDM-Based Approach to Customer, and Product Data Integration. Universal Journal of Finance and Economics, 1(1), 1-18.
- Awange, J. L., Ferreira, V. G., Forootan, E., Khandu, Zhang, K., & Andam-Akorful, S. A. (2016). Understanding climate change signals from satellite gravimetry: A review of the GRACE mission. Earth-Science Reviews, 135, 129–150.
- Aitha, A. R. (2021). Dev Ops Driven Digital Transformation: Accelerating Innovation In The Insurance Industry. Available at SSRN 5622190.
- Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science, 323(5919), 1297–1298.
- Annapareddy, V. N. (2021). Transforming Renewable Energy and Educational Technologies Through AI, Machine Learning, Big Data Analytics, and Cloud-Based IT Integrations. Machine Learning, Big Data Analytics, and Cloud-Based IT Integrations (December 30, 2021).
- Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
- Amistapuram, K. (2021). Digital Transformation in Insurance: Migrating Enterprise Policy Systems to .NET Core. Universal Journal of Computer Sciences and Communications, 1(1), 1–17. Retrieved from https://www.scipublications.com/journal/index.php/ujcsc/article/view/1348
- Emanuel, K. (2013). Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences, 110(30), 12219–12224.
- Vadisetty, R., Polamarasetti, A., Guntupalli, R., Raghunath, V., Jyothi, V. K., & Kudithipudi, K. (2021). Privacy-Preserving Gen AI in Multi-Tenant Cloud Environments. Sateesh kumar and Raghunath, Vedaprada and Jyothi, Vinaya Kumar and Kudithipudi, Karthik, Privacy-Preserving Gen AI in Multi-Tenant Cloud Environments (January 20, 2021).
- Kunkel, K. E., Easterling, D. R., Kristovich, D. A. R., Gleason, B., Stoecker, L., & Smith, R. (2015). Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophysical Research Letters, 42(22), 9845–9851.
- Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., … Wargan, K. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454
- Varri, D. B. S. (2020). Automated Vulnerability Detection and Remediation Framework for Enterprise Databases. Available at SSRN 5774865.
- Goodfellow, I., Bengio, Y., & Courville, A (2016). Deep learning. MIT Press.
- Yandamuri, U. S. (2021). A Comparative Study of Traditional Reporting Systems versus Real-Time Analytics Dashboards in Enterprise Operations. Universal Journal of Business and Management, 1(1), 1–13. Retrieved from https://www.scipublications.com/journal/index.php/ujbm/article/view/1357
- Vadisetty, R., Polamarasetti, A., Guntupalli, R., Rongali, S. K., Raghunath, V., Jyothi, V. K., & Kudithipudi, K. (2021). Legal and Ethical Considerations for Hosting GenAI on the Cloud. International Journal of AI, BigData, Computational and Management Studies, 2(2), 28–34.
- Ham, Y. G., Kim, J. H., & Luo, J. J. (2019). Deep learning for multi-year ENSO forecasts. Nature, 573(7775), 568–572.
- Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., … Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
- Koppolu, H. K. R. (2021). Data-Driven Strategies for Optimizing Customer Journeys Across Telecom and Healthcare Industries. International Journal Of Engineering And Computer Science, 10(12).
- Huang, H., Chen, F., & Zhang, X. (2015). Spatiotemporal data mining for climate change studies: A review. International Journal of Geographical Information Science, 29(9), 1543–1562.
- Gadi, A. L. The Role of Digital Twins in Automotive R&D for Rapid Prototyping and System Integration.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
- Meinshausen, N., McCandless, S., & Bühlmann, P. (2009). Stability selection. Journal of the Royal Statistical Society: Series B, 72(4), 417–473.
- Pandiri, L. Data-Driven Insights into Consumer Behavior for Bundled Insurance Offerings Using Big Data Analytics.
- Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., … Bengio, Y. (2019). Tackling climate change with machine learning. arXiv, 1–96.
- Vadisetty, R., Polamarasetti, A., Guntupalli, R., Rongali, S. K., Raghunath, V., Jyothi, V. K., & Kudithipudi, K. (2020). Generative AI for Cloud Infrastructure Automation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 1(3), 15–20.
- Stonebraker, M., Brown, P., Poliakov, A., & Raman, S. (2013). The architecture of SciDB. Proceedings of the 19th International Conference on Scientific and Statistical Database Management, 1–12.
- Chava, K., Chakilam, C., & Recharla, M. (2021). Machine Learning Models for Early Disease Detection: A Big Data Approach to Personalized Healthcare. International Journal of Engineering and Computer Science, 10(12), 25709–25730. https://doi.org/10.18535/ijecs.v10i12.4678
- Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22.
- Sriram, H. K., Adusupalli, B., & Malempati, M. (2021). Revolutionizing Risk Assessment and Financial Ecosystems with Smart Automation, Secure Digital Solutions, and Advanced Analytical Frameworks.
- Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., … Leonard, M. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469–477.
- Paleti, S. (2021). Cognitive Core Banking: A Data-Engineered, AI-Infused Architecture for Proactive Risk Compliance Management.
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283.
- Kaulwar, P. K. (2021). From Code to Counsel: Deep Learning and Data Engineering Synergy for Intelligent Tax Strategy Generation. Journal of International Crisis and Risk Communication Research, 1–20.
- Alessandrini, S., Delle Monache, L., Sperati, S., & Nissen, J. N. (2018). A novel application of deep learning for short-term wind forecasting. Renewable Energy, 133, 496–504.
- Singireddy, S., & Adusupalli, B. (2019). Cloud Security Challenges in Modernizing Insurance Operations with Multi-Tenant Architectures. International Journal of Engineering and Computer Science, 8(12). https://doi.org/10.18535/ijecs.v8i12.4433
- Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson, D. (2019). Viewing forced climate patterns through an AI lens. Geophysical Research Letters, 46(22), 13389–13398.
- Sathya Kannan. (2021). Integrating Machine Learning and Data Engineering for Predictive Maintenance in Smart Agricultural Machinery. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering. DOI: 10.17148/IJIREEICE.2021.91215
- Bauer, P., Stevens, B., & Hazeleger, W. (2021). A digital twin of Earth for the green transition. Nature Climate Change, 11(2), 80–83.
- Challa, K. (2021). Cloud Native Architecture for Scalable Fintech Applications with Real Time Payments. International Journal Of Engineering And Computer Science, 10(12).
- Bean, A., Williams, J. N., & Barnes, E. A. (2020). A comparison of machine learning approaches for detecting climate variability. Journal of Climate, 33(12), 5121–5140.
- Rongali, S. K. (2020). Predictive Modeling and Machine Learning Frameworks for Early Disease Detection in Healthcare Data Systems. Current Research in Public Health, 1(1), 1–15.
- Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2018). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). Springer.
- Gottimukkala, V. R. R. (2020). Energy-Efficient Design Patterns for Large-Scale Banking Applications Deployed on AWS Cloud.
- Chen, X., Wang, J., & Huang, G. (2021). Big data analytics for climate change research: Challenges and opportunities. Environmental Modelling and Software, 142, 105071.
- Pamisetty, V. (2021). A Cloud-Integrated Framework for Efficient Government Financial Management and Unclaimed Asset Recovery. SSRN 5272351.
- Chen, Y., Lv, Y., Wang, F. Y., & Wang, S. (2019). Long short-term memory networks for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 20(2), 755–764.
- Pandugula, C., & Yasmeen, Z. (2019). A Comprehensive Study of Proactive Cybersecurity Models in Cloud-Driven Retail Technology Architectures. Universal Journal of Computer Sciences and Communications, 1(1), 1253.
- Dong, S., Xu, Z., & Liu, Y. (2021). Distributed big data processing for climate modeling using Apache Spark. Journal of Big Data, 8(1), 1–19.
- Kalisetty, S. Leveraging Cloud Computing and Big Data Analytics for Resilient Supply Chain Optimization in Retail and Manufacturing: A Framework for Disruption Management.
- Ebert-Uphoff, I., & Hilburn, K. (2020). Evaluation, tuning, and interpretation of neural networks for environmental science applications. Bulletin of the American Meteorological Society, 101(12), E2149–E2163.
- Polineni, T. N. S., & Ganti, V. K. A. T. (2019). Revolutionizing Patient Care and Digital Infrastructure: Integrating Cloud Computing and Advanced Data Engineering for Industry Innovation.
- Gagne, D. J., Haupt, S. E., Nychka, D. W., & Thompson, G. (2019). Interpretable deep learning for spatial analysis of severe hail storms. Monthly Weather Review, 147(8), 2827–2845.
- Varri, D. B. S. (2021). Cloud-Native Security Architecture for Hybrid Healthcare Infrastructure. SSRN 5785982.