Generative Artificial Intelligence-Aided Image-Based Tuberculosis Diagnosis
Generative artificial intelligence systems such as large language models are coaxed via prompt engineering into generating suggestions for the development of an automated system for the diagnosis of tuberculosis on the basis of chest radiography image sequences. The recommendations of the generative artificial intelligence are followed through to construct artificial intelligence models and then these models are trained, tested and validated on suitably formatted data and harnessed for the automated detection of tuberculosis via the analysis or processing of chest radiography images. The performance of the trained artificial intelligence models could be enhanced with a view to fielding them in modules for the automated image-based diagnosis of tuberculosis as part of a comprehensive artificial intelligence-powered healthcare system that could provide clinical decision support to medical doctors and healthcare professionals.
1. World Health Organization (WHO) – Tuberculosis: https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Retrieved (2025).
2. World Health Organization (WHO) – Global Tuberculosis Reports: https://www.who.int/teams/global-tuberculosis-programme/tb-reports. Retrieved (2025).
3. Ekpar, F. E. A Comprehensive Artificial Intelligence-Driven Healthcare System, European Journal of Electrical Engineering and Computer Science, 8(3), Article 617. (2024).
4. Ekpar, F. E. Diagnosis of Chronic Kidney Disease Within a Comprehensive Artificial Intelligence-Driven Healthcare System, International Journal of Advanced Research in Computer and Communication Engineering, 13(9). (2024).
5. Ekpar, F. E. Image-based Chronic Disease Diagnosis Using 2D Convolutional Neural Networks in the Context of a Comprehensive Artificial Intelligence-Driven Healthcare System, Molecular Sciences and Applications, 4(13). (2024).
6. Ekpar, F. E. Leveraging Generative Artificial Intelligence Recommendations for Image-based Chronic Kidney Disease Diagnosis, International Journal of Advanced Research in Computer and Communication Engineering, 14(1). (2025).
7. Ekpar, F. E. A Novel Three-dimensional Multilayer Electroencephalography Paradigm, Fortune Journal of Health Sciences, 7(3). (2024).
8. Ekpar, F. E. System for Nature-Inspired Signal Processing: Principles and Practice, European Journal of Electrical Engineering and Computer Science, 3(6), pp. 1-10, (2019).
9. Ekpar, F. E. Nature-inspired Signal Processing, United States Patent and Trademark Office, US Patent Application Number: 13/674,035 (Filed: November 11, 2012, Priority Date: December 24, 2011), Document ID: US 20140135642 A1: Published: (2014).
10. Nomura, A., Noguchi, M., Kometani, M., Furukawa, K., Yoneda, T. Artificial Intelligence in Current Diabetes Management and Prediction, Curr Diab Rep. 21(12):61 (2021).
11. Kumar, Y., Koul, A., Singla, R., Ijaz, M. F. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda, Journal of Ambient Intelligence and Humanized Computing 14:8459–8486 (2023).
12. Ansari, S., Shafi, I., Ansari, A., Ahmad, J., Shah, S. I. Diagnosis of liver disease induced by hepatitis virus using artificial neural network, IEEE Int Multitopic. https://doi.org/10.1109/INMIC.2011.6151515 (2011).
13. Battineni, G., Sagaro, G. G., Chinatalapudi, N., Amenta, F. Applications of machine learning predictive models in the chronic disease diagnosis, J Personal Med. https://doi.org/10.3390/jpm10020021 (2020).
14. Abdar, M., Yen, N., Hung, J. Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision tree, J Med Biol Eng 38:953–965 (2018).
15. Chaikijurajai, T., Laffin, L., Tang, W. Artificial intelligence and hypertension: recent advances and future outlook, Am J Hypertens 33:967–974 (2020).
16. Fujita, S., Hagiwara, A., Otsuka, Y., Hori, M., Takei, N., Hwang, K. P., Irie, R., Andica, C., Kamagata, K., Akashi, T., Kumamaru, K. K., Suzuki, M., Wada, A., Abe, O., Aoki, S. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans, Invest Radiol 55:249–256 (2020).
17. Juarez-Chambi, R. M., Kut, C., Rico-Jimenez, J. J., Chaichana, L. K., Xi, J., Campos-Delgado, D. U., Rodriguez, F. J., Quinones-Hinojosa, A., Li, X., Jo, J. A. AI-Assisted In Situ Detection of Human Glioma Infiltration Using a Novel Computational Method for Optical Coherence Tomography, Clin Cancer Res 25(21):6329–6338 (2019).
18. Nashif, S., Raihan, R., Islam, R., Imam, M. H. Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System, World Journal of Engineering and Technology Vol 6, No. 4 (2018).
19. Chen, P. H. C., Gadepalli, K., MacDonald, R., Liu, Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G. S., Hipp, J. D., Mermel, C. H., Stumpe, M. C. An augmented reality microscope with real time artificial intelligence integration for cancer diagnosis, Nat Med 25:1453–1457 (2019).
20. Gouda, W., Yasin, R. COVID-19 disease: CT Pneumonia Analysis prototype by using artificial intelligence, predicting the disease severity, Egypt J Radiol Nucl Med 51(1):196 (2020).
21. Han, Y., Han, Z., Wu, J., Yu, Y., Gao, S., Hua, D., Yang, A. Artificial Intelligence Recommendation System of Cancer Rehabilitation Scheme Based on IoT Technology, IEEE Access 8:44924–44935 (2020).
22. Chui, C. S., Lee, N. P., Adeoye, J., Thomson, P., Choi, S. W. Machine learning and treatment outcome prediction for oral cancer, J Oral Pathol Med 49(10):977–985 (2020).
23. Koshimizu, H., Kojima, R., Okuno, Y. Future possibilities for artificial intelligence in the practical management of hypertension, Hypertens Res 43:1327–1337 (2020).
24. Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Loosen, S. H., Marx, A., Boor, P., Tacke, F., Neumann, U. P., Grabsch, H. I., Yoshikawa, T., Brenner, H., Chang-Claude, J., Hoffmeister, M., Trautwein, C., Luedde, T. Deep learning microsatellite instability directly from histology in gastrointestinal cancer, Nat Med 25:1054–1056 (2019).
25. Kwon, J. M., Jeon, K. H., Kim, H. M., Kim, M. J., Lim, S. M., Kim, K. H., Song, P. S., Park, J., Choi, R. K., Oh, B. H. Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography, EP Europace 22(3):412–419 (2020).
26. Khan, M. A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier, IEEE Access 8:34717–34727 (2020).
27. Oikonomou, E. K., Williams, M. C., Kotanidis, C. P., Desai, M. Y., Marwan, M., Antonopoulos, A. S., Thomas, K. E., Thomas, S., Akoumianakis, I., Fan, L. M., Kesavan, S., Herdman, L., Alashi, A., Centeno, E. H., Lyasheva, M., Griffin, B. P., Flamm, S. D., Shirodaria, C. Sabharwal, N., Kelion, A., Dweck, M. R., Van Beek, E. J. R., Deanfield, J., Hopewell, J. C., Neubauer, S., Channon, K. M., Achenbach, S., Newby, D. E., Antoniades, C. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography, Eur Heart J 40(43):3529–3543 (2019).
28. Sabottke, C. F., Spieler, B. M. The Effect of Image Resolution on Deep Learning in Radiography, Radiology: Artificial Intelligence Vol. 2. No. 1, 2: e190015 (2020).
29. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D. Language Models are Few-Shot Learners, Advances in Neural Information Processing Systems 33, (2020).
30. Gurnee, W., Tegmark, M. Language Models Represent Space and Time, arXiv, DOI: https://doi.org/10.48550/arXiv.2310.02207 (2023).
31. Rahman, T., Khandakar, A., Kadir, M. A., Islam, K. R., Islam, K. F., Mahbub, Z. B., Ayari, M. A., Chowdhury, M. E. H. Reliable Tuberculosis Detection using Chest X-ray with Deep Learning, Segmentation and Visualization, IEEE Access, Vol. 8, pp 191586 - 191601. (2020).
32. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X. TensorFlow: A System for Large Scale Machine Learning, Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16). (2016).
33. Pang, B., Nijkamp, E., Wu, Y. N. Deep Learning with TensorFlow: A Review, Journal of Educational and Behavioral Statistics. Vol. 45, Iss. 2. (2019).
34. Kingma, D. P., Ba, J. L. Adam: A Method for Stochastic Optimization, International Conference on Learning Representations (ICLR) (2015).
35. Zhang, Z. Improved Adam Optimizer for Deep Neural Networks, IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (2018).
Copyright (c) 2025 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.