Abstract
This paper presents a system that generates artificial intelligence (AI) models for the automated diagnosis of liver disease (cirrhosis of the liver) based on the recommended of generative AI tools such as large language models (LLMs). System architectures suggested by the LLMs via prompt engineering are implemented using the TensorFlow framework and trained, tested and validated on publicly accessible liver disease datasets comprising clinical or diagnostic measurements of factors such as age, gender, total bilirubin, direct bilirubin, total proteins, albumin, albumin and globulin ratio, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. After fine-tuning for robustness and enhanced performance, the resulting AI models could be harnessed into modules for the automated diagnosis of liver disease within the framework of a comprehensive AI-driven healthcare system.
Keywords
- Artificial Intelligence (AI)
- Generative Artificial Intelligence
- Large Language Model (LLM)
- Artificial Neural Network (ANN)
- Liver Disease
- Cirrhosis of the Liver
- Healthcare System
- TensorFlow
- Disease Diagnosis and Prediction
References
- World Health Organization (WHO) β Cirrhosis of the Liver: https://platform.who.int/mortality/themes/theme-details/topics/indicator-groups/indicator-group-details/MDB/cirrhosis-of-the-liver. Retrieved (2025).
- Ekpar, F. E. A Comprehensive Artificial Intelligence-Driven Healthcare System, European Journal of Electrical Engineering and Computer Science, 8(3), Article 617. (2024).
- Ekpar, F. E. A Novel Three-dimensional Multilayer Electroencephalography Paradigm, Fortune Journal of Health Sciences, 7(3). (2024).
- Ekpar, F. E. System for Nature-Inspired Signal Processing: Principles and Practice, European Journal of Electrical Engineering and Computer Science, 3(6), pp. 1-10, (2019).
- Ekpar, F. E. Nature-inspired Signal Processing, United States Patent and Trademark Office, US Patent Application Number: 13/674,035 (Filed: November 11, 2012, Priority Date: December 24, 2011), Document ID: US 20140135642 A1: Published: (2014).
- Nomura, A., Noguchi, M., Kometani, M., Furukawa, K., Yoneda, T. Artificial Intelligence in Current Diabetes Management and Prediction, Curr Diab Rep. 21(12):61 (2021).
- Kumar, Y., Koul, A., Singla, R., Ijaz, M. F. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda, Journal of Ambient Intelligence and Humanized Computing 14:8459β8486 (2023).
- Ansari, S., Shafi, I., Ansari, A., Ahmad, J., Shah, S. I. Diagnosis of liver disease induced by hepatitis virus using artificial neural network, IEEE Int Multitopic. https://doi.org/10.1109/INMIC.2011.6151515 (2011).
- Battineni, G., Sagaro, G. G., Chinatalapudi, N., Amenta, F. Applications of machine learning predictive models in the chronic disease diagnosis, J Personal Med. https://doi.org/10.3390/jpm10020021 (2020).
- Abdar, M., Yen, N., Hung, J. Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision tree, J Med Biol Eng 38:953β965 (2018).
- Chaikijurajai, T., Laffin, L., Tang, W. Artificial intelligence and hypertension: recent advances and future outlook, Am J Hypertens 33:967β974 (2020).
- Fujita, S., Hagiwara, A., Otsuka, Y., Hori, M., Takei, N., Hwang, K. P., Irie, R., Andica, C., Kamagata, K., Akashi, T., Kumamaru, K. K., Suzuki, M., Wada, A., Abe, O., Aoki, S. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans, Invest Radiol 55:249β256 (2020).
- Juarez-Chambi, R. M., Kut, C., Rico-Jimenez, J. J., Chaichana, L. K., Xi, J., Campos-Delgado, D. U., Rodriguez, F. J., Quinones-Hinojosa, A., Li, X., Jo, J. A. AI-Assisted In Situ Detection of Human Glioma Infiltration Using a Novel Computational Method for Optical Coherence Tomography, Clin Cancer Res 25(21):6329β6338 (2019).
- Nashif, S., Raihan, R., Islam, R., Imam, M. H. Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System, World Journal of Engineering and Technology Vol 6, No. 4 (2018).
- Chen, P. H. C., Gadepalli, K., MacDonald, R., Liu, Kadowaki, S., Nagpal, K., Kohlberger, T., Dean, J., Corrado, G. S., Hipp, J. D., Mermel, C. H., Stumpe, M. C. An augmented reality microscope with real time artificial intelligence integration for cancer diagnosis, Nat Med 25:1453β1457 (2019).
- Gouda, W., Yasin, R. COVID-19 disease: CT Pneumonia Analysis prototype by using artificial intelligence, predicting the disease severity, Egypt J Radiol Nucl Med 51(1):196 (2020).
- Han, Y., Han, Z., Wu, J., Yu, Y., Gao, S., Hua, D., Yang, A. Artificial Intelligence Recommendation System of Cancer Rehabilitation Scheme Based on IoT Technology, IEEE Access 8:44924β44935 (2020).
- Chui, C. S., Lee, N. P., Adeoye, J., Thomson, P., Choi, S. W. Machine learning and treatment outcome prediction for oral cancer, J Oral Pathol Med 49(10):977β985 (2020).
- Koshimizu, H., Kojima, R., Okuno, Y. Future possibilities for artificial intelligence in the practical management of hypertension, Hypertens Res 43:1327β1337 (2020).
- Kather, J. N., Pearson, A. T., Halama, N., JΓ€ger, D., Krause, J., Loosen, S. H., Marx, A., Boor, P., Tacke, F., Neumann, U. P., Grabsch, H. I., Yoshikawa, T., Brenner, H., Chang-Claude, J., Hoffmeister, M., Trautwein, C., Luedde, T. Deep learning microsatellite instability directly from histology in gastrointestinal cancer, Nat Med 25:1054β1056 (2019).
- Kwon, J. M., Jeon, K. H., Kim, H. M., Kim, M. J., Lim, S. M., Kim, K. H., Song, P. S., Park, J., Choi, R. K., Oh, B. H. Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography, EP Europace 22(3):412β419 (2020).
- Khan, M. A. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier, IEEE Access 8:34717β34727 (2020).
- Oikonomou, E. K., Williams, M. C., Kotanidis, C. P., Desai, M. Y., Marwan, M., Antonopoulos, A. S., Thomas, K. E., Thomas, S., Akoumianakis, I., Fan, L. M., Kesavan, S., Herdman, L., Alashi, A., Centeno, E. H., Lyasheva, M., Griffin, B. P., Flamm, S. D., Shirodaria, C. Sabharwal, N., Kelion, A., Dweck, M. R., Van Beek, E. J. R., Deanfield, J., Hopewell, J. C., Neubauer, S., Channon, K. M., Achenbach, S., Newby, D. E., Antoniades, C. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography, Eur Heart J 40(43):3529β3543 (2019).
- Sabottke, C. F., Spieler, B. M. The Effect of Image Resolution on Deep Learning in Radiography, Radiology: Artificial Intelligence Vol. 2. No. 1, 2: e190015 (2020).
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D. Language Models are Few-Shot Learners, Advances in Neural Information Processing Systems 33, (2020).
- Gurnee, W., Tegmark, M. Language Models Represent Space and Time, arXiv, DOI: https://doi.org/10.48550/arXiv.2310.02207 (2023).
- Ramana, B. V., Babu, M. S. P., Venkateswarlu, N. B. A Critical Comparative Study of Liver Patients from USA and INDIA: An Exploratory Analysis, International Journal of Computer Science Issues, Vol. 9, Iss. 3. (2012).
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X. TensorFlow: A System for Large Scale Machine Learning, Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI β16). (2016).
- Pang, B., Nijkamp, E., Wu, Y. N. Deep Learning with TensorFlow: A Review, Journal of Educational and Behavioral Statistics. Vol. 45, Iss. 2. (2019).
- Kingma, D. P., Ba, J. L. Adam: A Method for Stochastic Optimization, International Conference on Learning Representations (ICLR) (2015).
- Zhang, Z. Improved Adam Optimizer for Deep Neural Networks, IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (2018).