Abstract
Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are implemented. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.