Abstract
Opinion mining, also called sentiment analysis, is the field of study that analyzes people’s opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as products, services, organizations, individuals, issues, events, topics, and their attributes. Holistic lexicon-based approach does not consider the strength of each opinion, i.e., whether the opinion is very strongly negative (or positive), strongly negative (or positive), moderate negative (or positive), very weakly negative (or positive) and weakly negative (or positive). In this paper, we propose approach to rank entities based on orientation and strength of the entity’s reviews and user's queries by classifying them in granularity levels (i.e. very weak, weak, moderate, very strong and strong) by combining opinion words (i.e. adverb, adjective, noun and verb) that are related to aspect of interest of certain product. We shall use fuzzy logic algorithmic approach in order to classify opinion words into different category and syntactic dependency resolution to find relations for desired aspect words. Opinion words related to certain aspects of interest are considered to find the entity score for that aspect in the review.