Abstract
The role of data engineering in e-commerce systems is critical, especially for personalization, product recommendations, dynamic pricing, and demand forecasting. Conventional data engineering relies on large amounts of manual effort, making it challenging to keep pace with rapidly changing data and application requirements. The application of AI techniques to data pipelines in e-commerce is an active area of research and practice. Such application offers the prospect of greater automation of data engineering, similar to the role of CI/CD and MLOps for software and machine-learning model development. The work summarizes concepts relating to the use of AI techniques in data processing and engineering, thereby extending the scope of AI beyond traditional product systems and closer to the data pipelines themselves. Functionally significant e-commerce application areas are highlighted, with an emphasis on personalization systems. Several emerging architectural patterns in e-commerce, including data meshes, federated learning, privacy-preserving computation, and observability tools, are introduced. These patterns encapsulate concepts that support the deployment and operationalization of AI-driven data-granularity pipelines. Recent research also emphasizes how the application of AI techniques helps capture ever-changing data conditions and customer needs. Academic work proposes measures that can be applied across data pipelines to provide insights about data drift—an accelerated shift in data characteristics that leads to decreased model quality. Practical challenges in real-time usage together with opportunities for the further development of AI techniques in data engineering are also considered.Keywords
- Artificial intelligence data engineering data engineering automation data pipeline e-commerce intell
References
- Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (3rd ed.). Wiley.
- Inmon, W. H. (2005). Building the Data Warehouse (4th ed.). Wiley.
- Kleppmann, M. (2017). Designing Data-Intensive Applications. O’Reilly Media.
- Uday Surendra Yandamuri. (2022). Cloud-Based Data Integration Architectures for Scalable Enterprise Analytics. International Journal of Intelligent Systems and Applications in Engineering, 10(3s), 472–483. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/8005
- Newman, S. (2015). Building Microservices. O’Reilly Media.
- Guntupalli, R. (2023). Optimizing Cloud Infrastructure Performance Using AI: Intelligent Resource Allocation and Predictive Maintenance. Available at SSRN 5329154.
- Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
- Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with working sets. USENIX HotCloud.
- Nagubandi, A. R. (2023). Advanced Multi-Agent AI Systems for Autonomous Reconciliation Across Enterprise Multi-Counterparty Derivatives, Collateral, and Accounting Platforms. International Journal of Finance (IJFIN)-ABDC Journal Quality List, 36(6), 653-674.
- Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. Proceedings of the NetDB Workshop.
- Varri, D. B. S. (2023). Advanced Threat Intelligence Modeling for Proactive Cyber Defense Systems. Available at SSRN 5774926.
- White, T. (2015). Hadoop: The Definitive Guide (4th ed.). O’Reilly Media.
- Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., & Baldeschwieler, E. (2013). Apache Hadoop YARN: Yet another resource negotiator. Proceedings of the 4th ACM Symposium on Cloud Computing, 1–16.
- Rongali, S. K. (2022). AI-Driven Automation in Healthcare Claims and EHR Processing Using MuleSoft and Machine Learning Pipelines. Available at SSRN 5763022.
- Stonebraker, M. (2010). SQL databases v. NoSQL databases. Communications of the ACM, 53(4), 10–11.
- Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Addison-Wesley.
- DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007). Dynamo: Amazon’s highly available key-value store. Proceedings of SOSP, 205–220.
- Amistapuram, K. (2021). Digital Transformation in Insurance: Migrating Enterprise Policy Systems to .NET Core. Universal Journal of Computer Sciences and Communications, 1(1), 1–17. Retrieved from https://www.scipublications.com/journal/index.php/ujcsc/article/view/1348
- Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W. C., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, K., Saito, Y., Szumacher, M., Taylor, C., & Woodford, D. (2012). Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems, 31(3), 1–22.
- Abadi, D. (2012). Consistency tradeoffs in modern distributed database system design. IEEE Computer, 45(2), 37–42.
- Segireddy, A. R. (2021). Containerization and Microservices in Payment Systems: A Study of Kubernetes and Docker in Financial Applications. Universal Journal of Business and Management, 1(1), 1–17. Retrieved from https://www.scipublications.com/journal/index.php/ujbm/article/view/1352
- Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News, 33(2), 51–59.
- Leavitt, N. (2010). Will NoSQL databases live up to their promise? Computer, 43(2), 12–14.
- Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures (Doctoral dissertation). University of California, Irvine.
- Gottimukkala, V. R. R. (2022). Licensing Innovation in the Financial Messaging Ecosystem: Business Models and Global Compliance Impact. International Journal of Scientific Research and Modern Technology, 1(12), 177-186.
- Pressman, R. S. (2010). Software Engineering: A Practitioner’s Approach (7th ed.). McGraw-Hill.
- Sommerville, I. (2011). Software Engineering (9th ed.). Addison-Wesley.
- Avinash Reddy Aitha. (2022). Deep Neural Networks for Property Risk Prediction Leveraging Aerial and Satellite Imaging. International Journal of Communication Networks and Information Security (IJCNIS), 14(3), 1308–1318. Retrieved from https://www.ijcnis.org/index.php/ijcnis/article/view/8609
- Nygard, M. (2018). Release It! Design and Deploy Production-Ready Software (2nd ed.). Pragmatic Bookshelf.
- Nagabhyru, K. C. (2023). From Data Silos to Knowledge Graphs: Architecting CrossEnterprise AI Solutions for Scalability and Trust. Available at SSRN 5697663.
- Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook. IT Revolution Press.
- Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps. IT Revolution Press.
- Garapati, R. S. (2022). Web-Centric Cloud Framework for Real-Time Monitoring and Risk Prediction in Clinical Trials Using Machine Learning. Current Research in Public Health, 2, 1346.
- Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2018). Data management challenges in production machine learning. Proceedings of SIGMOD, 1723–1726.
- Inala, R. Revolutionizing Customer Master Data in Insurance Technology Platforms: An AI and MDM Architecture Perspective.
- Kumar, A., Boehm, M., & Yang, J. (2017). Data management in machine learning: Challenges, techniques, and systems. Proceedings of SIGMOD, 1717–1722.
- Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, M., Konwinski, A., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., & Xin, R. (2018). Accelerating the machine learning lifecycle with MLflow. IEEE Data Engineering Bulletin, 41(4), 39–45.
- Meda, R. (2023). Data Engineering Architectures for Scalable AI in Paint Manufacturing Operations. European Data Science Journal (EDSJ) p-ISSN 3050-9572 en e-ISSN 3050-9580, 1(1).
- Ispolni, A., Malavolta, I., & Lago, P. (2021). The role of architectural smells in ML systems. IEEE Software, 38(4), 60–67.
- Rahman, M. M., & Islam, M. A. (2020). Data pipeline automation: Concepts, tools, and challenges. ACM Computing Surveys, 53(6), 1–36.
- Lakshmanan, G. T., & Chakraborty, S. (2018). Data engineering: Concepts and tools for modern data pipelines. Morgan & Claypool.
- Goutham Kumar Sheelam, Hara Krishna Reddy Koppolu. (2022). Data Engineering And Analytics For 5G-Driven Customer Experience In Telecom, Media, And Healthcare. Migration Letters, 19(S2), 1920–1944. Retrieved from https://migrationletters.com/index.php/ml/article/view/11938
- Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K., & others. (2009). Data integration flows for business intelligence. Proceedings of EDBT, 1–11.
- Kummari, D. N. (2023). AI-Powered Demand Forecasting for Automotive Components: A Multi-Supplier Data Fusion Approach. European Advanced Journal for Emerging Technologies (EAJET)-p-ISSN 3050-9734 en e-ISSN 3050-9742, 1(1).
- Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The Complete Book (2nd ed.). Pearson.
- Garcia-Molina, H., & Salem, K. (1987). Sagas. Proceedings of SIGMOD, 249–259.
- Gadi, A. L. The Role Of AI-Driven Predictive Analytics In Automotive R&D: Enhancing Vehicle Performance And Safety.
- Tanenbaum, A. S., & van Steen, M. (2007). Distributed Systems: Principles and Paradigms (2nd ed.). Prentice Hall.
- Vogels, W. (2009). Eventually consistent. Communications of the ACM, 52(1), 40–44.
- Kelleher, J. D., & Tierney, B. (2018). Data Science. MIT Press.
- Pandiri, L. Leveraging AI and Machine Learning for Dynamic Risk Assessment in Auto and Property Insurance Markets. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), DOI, 10.
- Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
- Recharla, M., & Chitta, S. AI-Enhanced Neuroimaging and Deep Learning-Based Early Diagnosis of Multiple Sclerosis and Alzheimer’s.
- Kiran, M., Murphy, E., Monga, I., Dugan, J., & Baveja, S. (2015). Lambda architecture for large-scale data processing. IEEE International Conference on Big Data, 2789–2798.
- Nandan, B. P., & Chitta, S. S. (2023). Machine Learning Driven Metrology and Defect Detection in Extreme Ultraviolet (EUV) Lithography: A Paradigm Shift in Semiconductor Manufacturing. Educational Administration: Theory and Practice, 29 (4), 4555–4568.
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
- Adusupalli, B. (2023). DevOps-Enabled Tax Intelligence: A Scalable Architecture for Real-Time Compliance in Insurance Advisory. Journal for Reattach Therapy and Development Diversities. Green Publication. https://doi. org/10.53555/jrtdd. v6i10s (2), 358.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any classifier. Proceedings of ACM SIGKDD, 1135–1144.
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
- Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557–570.
- Paleti, S. (2023). Transforming Money Transfers and Financial Inclusion: The Impact of AI-Powered Risk Mitigation and Deep Learning-Based Fraud Prevention in Cross-Border Transactions. Available at SSRN 5158588.
- Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. Proceedings of ACM SIGSAC CCS, 308–318.
- Hardt, M., Recht, B., & Singer, Y. (2016). Train faster, generalize better: Stability of stochastic gradient descent. Proceedings of ICML, 1225–1234.
- Singireddy, J. (2023). Finance 4.0: Predictive Analytics for Financial Risk Management Using AI. European Journal of Analytics and Artificial Intelligence (EJAAI) p-ISSN 3050-9556 en e-ISSN 3050-9564, 1(1).
- Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504.
- Google. (2016). The TensorFlow system for large-scale machine learning (Whitepaper). Google Brain.
- Pandiri, L., & Singireddy, S. (2023). AI and ML Applications in Dynamic Pricing for Auto and Property Insurance Markets. Journal for ReAttach Therapy and Developmental Diversities, 6, 2206-2223.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8024–8035.
- Kummari, D. N. (2023). Energy Consumption Optimization in Smart Factories Using AI-Based Analytics: Evidence from Automotive Plants. Journal for Reattach Therapy and Development Diversities. https://doi. org/10.53555/jrtdd. v6i10s (2), 3572.
- Merkel, D. (2014). Docker: Lightweight Linux containers for consistent development and deployment. Linux Journal, 2014(239).
- Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, Omega, and Kubernetes. Communications of the ACM, 59(5), 50–57.
- Turnbull, J. (2014). The Docker Book: Containerization Is the New Virtualization. James Turnbull (technical book).
- Koppolu, H. K. R., Sheelam, G. K., & Komaragiri, V. B. (2023). Autonomous Telecommunication Networks: The Convergence of Agentic AI and AI-Optimized Hardware. International Journal of Science and Research (IJSR), 12(12), 2253-2270.
- Lakshman, A., & Malik, P. (2010). Cassandra: A decentralized structured storage system. ACM SIGOPS Operating Systems Review, 44(2), 35–40.
- Hunt, P., Konar, M., Junqueira, F. P., & Reed, B. (2010). ZooKeeper: Wait-free coordination for internet-scale systems. Proceedings of USENIX ATC, 1–14.
- Meda, R. (2023). Intelligent Infrastructure for Real-Time Inventory and Logistics in Retail Supply Chains. Educational Administration: Theory and Practice.
- Stonebraker, M., & Çetintemel, U. (2005). “One size fits all”: An idea whose time has come and gone. Proceedings of ICDE, 2–11.
- Abadi, D., Madden, S., & Hachem, N. (2008). Column-stores vs. row-stores: How different are they really? Proceedings of SIGMOD, 967–980.
- Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26(1), 65–74.
- Ramesh Inala. (2023). Big Data Architectures for Modernizing Customer Master Systems in Group Insurance and Retirement Planning. Educational Administration: Theory and Practice, 29(4), 5493–5505. https://doi.org/10.53555/kuey.v29i4.10424
- Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.
- Joachims, T. (2002). Optimizing search engines using clickthrough data. Proceedings of ACM SIGKDD, 133–142.
- Garapati, R. S. (2023). Optimizing Energy Consumption in Smart Build-ings Through Web-Integrated AI and Cloud-Driven Control Systems.
- Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of WWW, 285–295.
- Kushvanth Chowdary Nagabhyru. (2023). Accelerating Digital Transformation with AI Driven Data Engineering: Industry Case Studies from Cloud and IoT Domains. Educational Administration: Theory and Practice, 29(4), 5898–5910. https://doi.org/10.53555/kuey.v29i4.10932
- Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.
- Aitha, A. R. (2023). CloudBased Microservices Architecture for Seamless Insurance Policy Administration. International Journal of Finance (IJFIN)-ABDC Journal Quality List, 36(6), 607-632.
- Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. Proceedings of PODS, 1–16.