In this work, floating-gate MOSFET (FGMOS) based low-voltage, low-power (LV/LP) variant of voltage differencing buffered amplifier (VDBA). The linearity of the Operational Transconductance Amplifier (OTA) stage of the proposed active element is observed to increase compared to the conventional CMOS VDBA. This has been demonstrated for several supply voltages. The proposed circuit operates at low supply voltage of ±1.35V with total power consumption of 0.745mW. The application of the proposed circuit is verified through robust resistorless voltage mode universal biquad filters which are observed to implement standard filter functions. The simulations are performed through SPICE in TSMC 0.18µm technology. The work is intended to find applications in low-voltage, low-power battery-operated medical devices and other analog signal processing circuits.
References
E. Rodriguez-Villegas, 2006, Low power and low voltage circuit design with the FGMOS transistor, IET Circuits, Devices and Systems Series 20, The Institution of Engineering and Technology, London, UK. ISBN: 0863416179
C. Toumazou, F.J. Lidgey and D. G. Haigh, 1990, Analogue IC design: The current-mode approach, IEE, Peter Peregrinus, London. IBSN: 0863412971
G.W. Roberts and A.S. Sedra, 1989, All current-mode frequency selective circuits Electronics Letters 25 (12), 759-761 DOI:10.1049/el:19890513
F. Yuan, 2007, Voltage-mode versus current- mode: A critical comparison, CMOS Current-Mode Circuits for Data Communications, Series: Analog Circuits and Signal Processing, 1-12. DOI: 10.1007/978-0-387-47691-9_1
D. Biolek , R. Senani , V. Biolkova and Z. Kolka, 2008, Active elements for analog signal processing: classification, review, and new proposals, Radioengineering, Vol. 17 (4), 15-32.
F. Kacar, A. Yesil and A. Noori, 2012, New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications Radioengineering, Vol. 21(1), 333-339.
R. Sotner, J. Jerabek and N. Herencsar, 2013, Voltage differencing buffered/inverted amplifiers and their applications for signal generation, Radioengineering, 22 (2), 490- 504.
M. Gupta, R. Srivastava, U. Singh , 2015, Low-voltage low-power FGMOS based
VDIBA and its application as universal, Microelectronics , Vol 46 (2), 125–134.
M. G. L. Kumar, K. Khare and P. Sharma, 2012. Low voltage-power-area FGMOS neural classifier circuit for VLSI analog BIST. International Journal of Engineering Research & Technology, Vol. 1(3), 1-4. ISSN: 2278-0181
Y. Berg and T. S. Lande, 1997, Programmable floating gate MOS logic for low-power operation. In Proceedings of IEEE International Symposium on Circuits and Systems, 1792-1795, doi: 10.1109/ISCAS.1997.621493
R. Pandey and M. Gupta, 2010. FGMOS based voltage-controlled grounded resistor. Radioengineering, Vol. 19(3), 455-459.
M. Gupta, R. Srivastava and U. Singh, 2014, Low voltage floating gate MOS transistor based differential voltage squarer. ISRN Electronics, Article ID 357184, 6 pages, doi: 10.1155/2014/357184
P.S. Manhas, S. Sharma, K. Pal, L.K. Mangotra and K.S. Jamwal, 2008, High performance FGMOS-based low voltage current mirror. Indian Journal of Pure & Applied Physics, Vol. 46, 355-358
R. Srivastava, M. Gupta and U. Singh, 2014, Low voltage floating gate MOS transistor based four quadrant multiplier. Radioengineering, Vol. 23(4), 1150-1160
Y. Liming, S.H.K. Embadi and E. Sanchez- Sinencio, 1997, A floating gate MOSFET D/A converter. In Proceedings of IEEE International Symposium on Circuits and Systems, 409-412, doi: 10.1109/ISCAS.1997.608754
A.Ninawe, R. Srivastava, A. Dewaker and
M. Gupta, 2016 (In press), Design of low- voltage, low-power FGMOS based voltage buffer, analog inverter and winner-take-all analog signal processing circuits, Circuits and Systems, Vol. 7(1) Paper ID 7600416
V. Biolkova, Z. Kolka and D. Biolek, 2009, Fully balanced voltage differencing buffered amplifier and its applications 52nd IEEE International Midwest Symposium on Circuits and Systems, 45- 48. DOI: 10.1109/MWSCAS.2009.5236157
A 1.2v micropower CMOS Op amp with floating-gate input transistors E. Raisanen- Ruotsalainen, , K.Lasanen and J. Kostamovaara, 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vol.2, 794 – 797. DOI: 10.1109/MWSCAS.2000.952875
Z. Alsibai, 2013, Floating-gate operational transconductance amplifier, 2013, International Journal of Information and Electronics Engineering, Vol. 3(4), 361-364. DOI: 10.7763/IJIEE.2013.V3.335
O. Naess and Y. Berg, 2002, Tunable floating-gate low-voltage transconductor, IEEE International Symposium on Circuits and Systems, Vol.4, 663 666. DOI: 10.1109/ISCAS.2002.1010543
V.S. Babu, A. Sekhar, R. Salini Devi and
M.R. Baiju, 2009, Floating gate MOSFET based operational transconductance amplifier and study of mismatch, 4th IEEE Conference on Industrial Electronics and Applications, 127 – 132. DOI: 10.1109/ICIEA.2009.5138183
Y. Berg, O. Naess and M. Hovin, 2000, Ultra low voltage floating-gate transconductance amplifier with tunable gain and linearity, In Proceedings of The 2000 IEEE International Symposium on Circuits and Systems, Vol.3 343 – 346. DOI: 10.1109/ISCAS.2000.856067
R.G. Carvajal, A. Torralba, J. Tombs, F. Mu ñoz and J. Ramírez-Angulo, Low voltage class AB output stage for CMOS Op-amps using multiple input floating gate transistors, 2003, Analog Integrated Circuits and Signal Processing, Vol. 36(3), 245-249
N. Herencsar, S. Minaei, J. Koton, E. Yuce and K. Vrba, 2013, New resistorless and electronically tunable realization of dual- output VM all-pass filter using VDIBA, Analog Integrated Circuits and Signal Processing, Vol. 74(1), 141-154. DOI 10.1007/s10470-012-9936-2
D. Biolek, V. Biolkova and Z. Kolka, 2010, All-pass filter employing fully balanced voltage differencing buffered amplifier. In Proceedings of The IEEE Latin American Symposium on Circuits and Systems, 232- 235.