Abstract
Tunable microstrip filtering antennas can be used to modify the operating frequency, polarization, or radiation pattern in real time. These antennas provide a number of advantages, such as more flexibility and adaptability and decreased dimensions, weight, and power consumption. The main aim of the current work is to design a tunable microstrip filtering antenna for cognitive radio applications. Prior to tune the frequency of the proposed design the operating bandwidth is enhanced by implementing the Snow-flake Koch fractal optimization of 3rd iteration along with the defected ground structure. To achieve the frequency tunable characteristics a stepped impedance resonator (SIR) filter is integrated with the feed line. The order of the SIR filter is responsible for frequency tunability. At each stage the simulated designs are fabricated and measured using VNA and anechoic chamber. The peak gain achieved is 3.2dBi whereas the minimum gain achieved is 1.7dBi. The co-polarization values are 25dB is stronger than cross-polarization values. There is a good concurrence is observed between the simulated and measured results in terms of 10dB Return Loss, VSWR, Gain, Directivity and Far Filed radiation patterns. The proposed design is well suited for cognitive radio applications as it is operating at 1.97GHz, 3.97GHz and 5.87 GHz frequencies respectively.
Keywords
- Microstrip antenna
- Defected Ground Structure
- fractal design
- filtering antenna
- SIR filter
References
- 1. Kin-Ln Wong. Compact and Broadband Microstrip Antennas. John Wily & Sons by; 2002.
- 2. Girish Kumar. Broadband Microstrip Antennas. Artech House, INC; 2003.
- 3. Pozar. D.M and Kaufman. B. Increasing the bandwidth of a microstrip antenna by proximity coupling. Electronic Letters. 23(2); 1987:368-369.
- 4. Tseng. C.F, Huang. C. L, Hsu. H.C. Microstrip Fed Monopole Antenna with a Shorted Parasitic Element for Wideband Application. Progress in Electromagnetics Research Letters. 7; (2009):115-125.
- 5. Islam. M.T. Broadband E-H Shaped Microstrip Patch Antenna for Wireless Systems. Progress in Electromagnetics Research, PIER. 98, (2009):163β173.
- 6. Li, H, Wang. B. H, and Shao. W. Novel broadband reflector array antenna with compound-cross-loop elements for millimetre wave application. Journal of Electromagnetic Waves and Applications. 21(10), (2007):1333β1340.
- 7. Ershadi. S, Keshtkar. Abdelrahman. A. H, and Xin. H. Wideband High Gain Antenna Subarray for 5G Applications. Progress in Electromagnetics Research C. 78; (2017):33-46.
- 8. Jeyakumar. P. Design and Simulation of Directive High Gain Microstrip Array Antenna for 5G Cellular Communication. Asian Journal of Applied Science and Technology. 2(2), (2018):301-313.
- 9. Kavitha. M. 28 GHz Printed Antenna for 5G Communication with Improved Gain Using Array. International Journal of Scientific & Technology Research. 9(3); (2020):5127-5133.
- 10. Oraizi. H and Hedayati. S. Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals. IEEE Antennas Wireless Propagation Letters. 10; (2011):67β70.
- 11. Shrestha. S, Park J.J, Noh S.K and Choi D.Y. Design of 2.45 GHz Sierpinski fractal based miniaturized microstrip patch antenna. In Proceedings of the 2012 18th Asia βPacific Conference on Communications.2012 (pp. 36β41).
- 12. Herbko. M and Lopato.P. Microstrip patch strain sensor miniaturization using Sierpinski curve fractal geometry. Sensors. 19;(2019):3989.
- 13. Reha A, El Amri. A and Bouchouirbat. M. The behavior of CPW-fed Sierpinski curve fractal antenna. Journal Microwave Optoelectronics Electromagnetics Applications. 17; (2018):366β372.
- 14. Tiwari. D, Ansari. A. J, Saroj. K.A and Kumar M. Analysis of a miniaturized hexagonal Sierpinski gasket fractal microstrip antenna for modern wireless communications. AEUβInternational Journal of Electronics Communication. 123; (2020):153288.
- 15. Liu. J.C, Liu. H.H, Yeh.K.D, Liu. C.Y, Zeng. B. H and Chen. C.C. Miniaturized dual-mode resonators with Minkowski-island-based fractal patch for WLAN dual-band systems. Propagation Electromagnetic Research. 26; (2012):229β243.
- 16. Nugraha. D.E.P.I, Surjati. I and Alam. S. Miniaturized Minkowski-island fractal microstrip antenna fed by proximity coupling for wireless fidelity application. Telecommunications Computer Electronic Control. 15, (2017):1119β1125.
- 17. Ali. K. J and Ali. J. A. S. A miniaturized multiband Minkowski-like pre-fractal patch antenna for GPS and 3G IMT-2000 handsets. Asian journal of Information Technology. 6,(2007):584β588.
- 18. Costanzo. S and Qureshi. A. M. Miniaturized planar inverted-F antenna using Minkowski pre-fractal structure. In Proceedings of the 2010 14th European Conference on Antennas and Propagation. 2020 (pp.199-204).
- 19. Oliveira. E. E. C., Silva. P. H. D. F, Campos. A. L. P. S. Small-size quasi-fractal patch antenna using the Minkowski curve. Microwave Optical Technology Letters. 52, (2010):805β809.
- 20. Tarbouch. M, Amri. A. El, Terchoune. H and Barro. O. Compact CPW-fed microstrip octagonal patch antenna with Hilbert fractal slots for WLAN and WIMAX applications. Innovations in Smart Cities and Applications, Lecture Notes in Networks and Applications.2018 (pp. 432β444).
- 21. Kumar. A and Pharwaha. A. P. S. Development of a modified Hilbert curve fractal antenna for multiband applications. IETE journal of Research.2020.
- 22. Samson Daniel. R. Asymmetric coplanar strip fed with Hilbert curve fractal antenna for multiband operations. Wireless Personal Communications. 116, (2021)791β 803.
- 23. Huang. J. T, Shiao. J. H, and Wu. J. M. A miniaturized Hilbert inverted-F antenna for wireless sensor network applications. IEEE Transactions Antennas Propagation. 58, (2010):3100β3103.
- 24. McVay. J and Hoorfar. A. Miniaturization of top loaded monopole antennas using Peano-curves. In Proceedings of the 2007 IEEE Radio and Wireless Symposium.2007 (pp. 253β256).
- 25. Oraizi. H, Bahramgiri. M and Hedayati. S. A novel miniaturized multilayer E-shaped patch antenna using Giuseppe Peano fractal geometry on its edges for WLAN dual band applications. In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering. 2013.
- 26. Sharma. N, Pal Singh. G and Sharma. V. Miniaturization of fractal antenna using novel Giuseppe Peano geometry for wireless applications. In Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems. 2016 (pp. 1β4).
- 27. Beigi. P and Mohammadi. P. A novel small triple-band monopole antenna with crinkle fractal structure. AEU β International Journal of Electronics Communication. 70, (2016):1382β1387.
- 28. Beigi. P, Zehforoosh. Y, Rezvani. M and Nourinia. J. Evaluation of a compact triangular crinkle-shaped multiband antenna with circular polarized for ITU band based on MADM method. Circuit World. 45, (2019):292β299.
- 29. Campos. A. L. P. S, de Oliveira E. E. C and Silva P. H. F. Miniaturization of frequency selective surfaces using fractal Koch curves. Microwave Optical Technology Letters. 51, (2009):1983β1986.
- 30. Manohar. M. Miniaturised low-profile super wideband Koch snowflake fractal monopole slot antenna with improved BW and stabilised radiation pattern. IET Microwave Antennas Propagation. 13, (2019):1948β1954.
- 31. Khan. O. M, Islam Z. U, Rashid. I, Bhatti F. A, and Islam. Q. U. Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications. Progress in Electromagnetic Research. 141, (2013):693β710.
- 32. El-Tanami. M. A. and Rebeize. G. M. Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters. IEEE Transaction on Microwave Theory Techniques. 56 (5), (2008):1137β1148.
- 33. Zhang. X. Y, Xue. Q, Chan. C. H, and Hu. J. B. Low-loss frequency-agile bandpass filters with controllable bandwidth and suppressed second harmonic. IEEE Transactions on Microwave Theory Techniques. 58 (6), (2010):1557β1564.
- 34. Peng. W. W and I. C. Hunter .I.C. A new class of low-loss high-linearity electronically reconfigurable microwave filter. IEEE Transactions on Microwave Theory Techniques. 56 (8), (2008):1945β1953.
- 35. Blondy. P, C. Palego. C, Houssini. M, Pothier. A, and Crunteanu. A. RF-MEMS reconfigurable filters on low loss substrates for flexible front ends. Proceeding Asia-Pacific Microwave Conference (APMC).2007. (pp.1β3), Bangkok.
- 36. Reines, I. C, Goldsmith C. L, Nordquist. C. D, Dyck C. W, G. Kraus. M, Plut. T. A, Finnegan. P. S, Austin. F, and Sullivan. C. T. A low loss RF MEMS Ku-band integrated switched filter bank. IEEE Microwave Wireless Components Letters. 15 (2), (2005):74β76.
- 37. Zhang, N., Deng. Z. L, and Sen. F. CPW tunable band-stop filter using hybrid resonator and employing RF MEMS capacitors. IEEE Transactions on Electron Devices; 60 (8), (2013):2648β 2655.
- 38. Safari. M, Shafai.C and Shafai. L. X-band tunable frequency selective surface using MEMS capacitive loads. IEEE Transactions on Antenna and Propagation. 15(4); (2014):1β9.
- 39. Chun. Y. H, Hong. J. S, Peng. B, Jackson. T. J, and Lancaster. J.M. BST varactor tunable dual-mode filter using variable Zc transmission line. IEEE Microwave and Wireless Components Letters. 2008; 18(1):167β169.
- 40. Ahmad. I, Haris. D, Wasi Khan and Syed Amir. A. S. Design and experimental analysis of multiband compound reconfigurable 5G antenna for sub-6 GHz wireless applications. Wireless Communications and Mobile Computing. 2021(pp.1β14).
- 41. Palsokar. A. A and Lahudkar. S. L. Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode. AEU - International Journal of Electronics and Communications. 2020; 125:153-157.
- 42. Singh. G, Kanaujia. K. B, Pandey. V. K, Gangwar. D, and Kumar. S. Pattern and frequency reconfigurable antenna with diode loaded ELC resonator. International Journal of Microwave and Wireless Technologies. 2020; 12(2):163β175.
- 43. Ghaffar. A, Li. J. X, Awan. A. W, Hussain. A. A flexible and pattern reconfigurable antenna with small dimensions and simple layout for wireless communication systems operating over 1.65β2.51 GHz. Electronics.2021; 10(5):601-606.
- 44. Madhav, B. T. P., Rajiya. S, Nadh. B.P, and Kumar. S. M. Frequency reconfigurable monopole antenna with DGS for ISM band applications. Journal of Electrical Engineering. 2018; 69(4):293β299.
- 45. Iqbal, A., S. Ullah, U. Naeem, A. Basir, and U. Ali, Design, fabrication, and measurement of a compact frequency reconfigurable modified T-shape planar antenna for portable applications, Journal of Electrical Engineering and Technology, 2017;12(4):1611β1618.