Abstract
Human monkeypox (MP) is a zoonotic disease caused by the monkeypox virus (MPV). It is considered one of the most significant orthopoxvirus infections after smallpox. MPV originated from the Congo Basin and West African clades, MP virus has spread globally, with recent outbreaks highlighting the need for predictive models in understanding its transmission. The aim of the study is to deploy machine learning models for monkeypox outbreak prediction across Africa. In this work, the most recent monkeypox dataset was evaluated and the significant instances were visualised. Feature extraction techniques like Recursive Feature Elimination (RFE), and Least Absolute Shrinkage and Selection Operator (LASSO) were deployed. These methods identify key predictors of monkeypox cases, including total cases, new cases smoothed, and total deaths, to improve model accuracy and interpretability. The various machine learning models employed are Random Forest, Decision Tree, Support Vector Machine, XGBoost, LightGBM, and CatBoost to evaluates their effectiveness in outbreak prediction. The results indicate that Random Forest and XGBoost performed best, achieving accuracy scores of 0.9696 and 0.8949, respectively, with R² values near 1.0 and low RMSE values of 1.29 and 5.51 for Random Forest and XGBoost respectively. The study showed that Random Forest and XGBoost are reliable tools for understanding monkeypox virus transmission dynamics across African countries. These models provide valuable insights for public health interventions and help to identify trends and factors influencing outbreaks.
References
- 1. Adalja, A., & Inglesby, T. (2022). A novel international monkeypox outbreak. Annual Internal Medicine, 175, 1175–1176.
- 2. Akinola, S. O., Peter, O., Olukanmi., Tshilidzi, Marwala. (2023). Early Prediction of Monkeypox Virus Outbreak Using Machine Learning. 1(2), 14-29. doi: 10.3991/itdaf. v1i2.40175.
- 3. Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. In Knowledge Engineering Review, 34 (1). https://doi.org/10.1017/S026988891800036X
- 4. Anil, S., Joseph, B., Thomas, M., Vishnupriya, K., Sweety., N., Suresh., & Waltimo, T. (2024). Monkeypox: A Viral Zoonotic Disease of Rising Global Concern. Infectious diseases & immunity, 4(3), 121-131. doi: 10.1097/id9.0000000000000124.
- 5. Anwar, F., Haider, F., Khan, S., Ahmad, I., Ahmed, N., Imran, M. et al. (2023). Clinical manifestation, transmission, pathogenesis, and diagnosis of monkeypox virus: a comprehensive review. Life, 13, 522.
- 6. Arotolu, T. E., Afe, A. E., Wang, H., Lv, J.; Shi, K., Huang, L., Wang, X. (2022). Spatial modeling and ecological suitability of monkeypox disease in Southern Nigeria. PLoS ONE, 17, e0274325.
- 7. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197–227, https://doi.org/10.1007/s11749-016-0481-7.
- 8. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324.
- 9. Bunge, E. M., Hoet, B., Chen, L., Lienert, F., Weidenthaler, H., Baer, L. R., et al., (2022). The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Neglected Tropical Disease, 16, e0010141, https://doi.org/10.1371/journal.pntd.0010141.
- 10. Bushra, A. A., Kim, D., Kan, Y., & Yi, G. (2024). AutoSCAN: automatic detection of DBSCAN parameters and efficient clustering of data in overlapping density regions. Peer Journal. doi: 10.7717/peerj-cs.1921
- 11. Chang, V., Bhavani, V. R., Xu, A. Q., & Hossain, M. A. (20222). An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Anal, 2, 100016, https://doi.org/10.1016/j.health.2022.100016.
- 12. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future of Healthcare Journal, 6, 94–98, https://doi.org/10.7861/futurehosp.6-2-94.
- 13. Doshi, R.H.; Guagliardo, S.A.J.; Doty, J.B.; Babeaux, A.D.; Matheny, A.; Burgado, J.; Townsend, M.B.; Morgan, C.N.; Satheshkumar, P.S.; Ndakala, N.; et al. (2019). Epidemiologic and Ecologic Investigations of Monkeypox, Likouala Department, Republic of the Congo, 2017. Emergence of Infectious Disease, 25, 281–289.
- 14. Eid, M. M., El-Kenawy, E. S., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., Alharbi, A. H., Abdelhamid, A. A., Ibrahim, A., Amer, G. M., et al. (2022) Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases. Mathematics, 10, 3845.
- 15. Howard, M., Maki, J. J., Connelly, S., Hardy, D. J., Cameron, A. (2022). Whole-genome sequences of human monkeypox virus strains from two 2022 global outbreak cases in western New York state. Microbiol Resour Announc, 11, e00846. -22.
- 16. Kaler, J., Hussain, A., Flores, G., Kheiri, S., & Desrosiers, D. (2022). Monkeypox: a comprehensive review of transmission, pathogenesis, and manifestation. Cureus, 14.
- 17. Khan, m. Y., Qayoom, A., Nizami, M. S., Siddiqui, M. S., Wasi, S., & Raazi, S. M. K. R. (2021). Automated prediction of good dictionary EXamples (GDEX): a comprehensive experiment with distant supervision, machine learning, and word embeddingbased deep learning techniques. Complexity, 2021, 2553199, https://doi.org/10.1155/2021/2553199.
- 18. Kugelman, J. R., Johnston, S. C., Mulembakani, P. M., Kisalu, N., Lee, M. S., Koroleva, G., et al. (2014). Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emergence of Infectious Disease, 20, 232–239. https://doi.org/10.3201/eid2002.130118.
- 19. Luo, Y., Zhang, T., Cao, J., Hou, W., Wang, A., & Jin, C. (2023). Monkeypox: An outbreak of a rare viral disease. doi: 10.1016/j.jmii.2023.12.006
- 20. Mahesh, (B). (2022). Machine learning algorithms-a review. International Journal of Science Research, 9, 381–386.
- 21. Majumder, P. (2022). Analyses of polynomial neural networks for prediction of the prevalence of monkeypox infections in Asia and around the world. Electronic Journal of General Medicine, 19, em410.
- 22. McCollum, A. M., & Damon, I. K. (2014). Human monkeypox. Clinical Infectious Disease, 58, 260–267, https://doi.org/10.1093/cid/cit703.
- 23. McCollum, A.M.; Nakazawa, Y.; Ndongala, G.M.; Pukuta, E.; Karhemere, S.; Lushima, R.S.; Ilunga, B.K.; Kabamba, J.; Wilkins, K.; Gao, J.; et al. (2015). Human Monkeypox in the Kivus, a Conflict Region of the Democratic Republic of the Congo. America Journal of Tropical Medicine Hygiene, 93, 718–721
- 24. Mitja, O., Ogoina, D., Titanji, B. K., Galvan, C., Muyembe, J. J., Marks, M. et al. (2023). Human monkeypox and smallpox viruses: genomic comparison. Lancet, 401, 60–74, https://doi.org/10.1016/S0140-6736(22)02075-X.
- 25. Nayak, A. K., Bisoyi, S. K., Banerjee, A., Mahanta, D., & Swain, A. (2024). Mpox Classifier: A Deep Transfer Learning Model for Monkeypox Disease Detection and Classification. 1-6. doi: 10.1109/ic-cgu58078.2024.10530778
- 26. Onyijen, O. H., Hamadani, A., Awojide, S., & Ebhohimen, I. E. (2021). Prediction of Deaths in Nigeria from COVID 19 using Various Machine Learning Algorithms. Sau Sci-Tech Journal, 6(1).
- 27. Onyijen, O. H., Olaitan, E. O., Olayinka, T. C., & Oyelola, S. (2023). Data Driven Machine Learning Techniques for the Prediction of Cholera Outbreak in West Africa. International Journal of Applied and Natural Sciences, 1(1), 9-21.
- 28. Pratama, Y. P., Sulistianingsih, E., Debataraja, N. N., & Imro’ah, N. (2024). K-Means Clustering dan Mean Variance Efficient Portfolio dalam Portofolio Saham. Jambura Journal Of Probability And Statistics, 5(1):24-30. doi: 10.37905/jjps.v5i1.20298
- 29. Qureshi, M., Khan, S., Bantan, R. A., Daniyal, M., Elgarhy, M., Marzo, R. R., Lin, Y. (2022). Modeling and Forecasting Monkeypox Cases Using Stochastic Models. Journal of Clinical Medicine, 11, 6555.
- 30. Rampogu, S., Kim, Y., Kim, S. W., & Lee, K. W. (2023). An overview on monkeypox virus: pathogenesis, transmission, host interaction and therapeutics. Front. Cell Infectious Microbiology, 13, 31.
- 31. Rashid, J., Batool, S., Kim, J., Nisar, M. W., Hussain, A. S. Juneja, et al. (2022). An augmented artificial intelligence approach for chronic diseases prediction. Front. Public Health, 10.
- 32. Rashidi, H.H., Tran, N. K., Betts, E. V., Howell, L. P., Green, R. (2019). Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad Pathol, 6, 2374289519873088. https://doi.org/10.1177/237428951
- 33. Sam-Agudu, N. A., Martyn-Dickens, C., & Ewa, A. U. (2023). A global update of mpox (monkeypox) in children. Curr. Opin. Pediatr, 35.
- 34. Singhal, T., Kabra, S. K., & Lodha, R. (2022). Monkeypox: a review. Indian J. Pediatr. 89, 955–960. https://doi.org/10.1007/s12098-022-04348-0.
- 35. Sklenovska, N., & Van Ranst, M. (2018). Emergence of monkeypox as the most important orthopoxvirus infection in humans. Frontier in Public Health, 6, 241.
- 36. Stafford, I., Kellermann, M., Mossotto, E., Beattie, D., MacArthur, B., & Ennis, S. (2020). A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. Npj Digit Med, 3, 30. https://doi.org/10.1038/s41746-020-0229-3.
- 37. Sun, Y., Nie, W., Tian, D., & Ye, @. (2024). Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. Journal of Clinical Virology, 171, 105662-105662. doi: 10.1016/j.jcv.2024.105662.
- 38. Yasmin, F., Hassan, M., Zaman, S., Aung, T., Karim, A., & Azam, S. (2022). A Forecasting Prognosis of the Monkeypox Outbreak Based on a Comprehensive Statistical and Regression Analysis. Computation, 10(10), 177. https://doi.org/10.3390/computation10100177