Performance Evaluation of Interleaved Division Multiple Access Using Low Density Parity Check Forward Error Correcting Codes for 5g Wireless System
The increasing demand for high data rates, massive connectivity, and low latency in next-generation wireless communication systems could not be efficiently met using conventional orthogonal multiple access (OMA) schemes. This limitation necessitated the shift toward Non-Orthogonal Multiple Access (NOMA) techniques, particularly Interleaved Division Multiple Access (IDMA), which emerged as a promising candidate for 5G and beyond due to its improved system flexibility, spectral efficiency, and enhanced coverage. Despite these advantages, IDMA faced two critical challenges: optimal interleaver design and the selection of an efficient forward error correction (FEC) scheme. In this study, the performance of an LDPC-coded IDMA system employing a Gold sequence interleaver was analyzed under various conditions. The system’s bit error rate (BER) performance was evaluated over Rayleigh fading and additive white Gaussian noise (AWGN) channels with different interleaving schemes and FEC techniques. The BER versus Eb/No (energy-per-bit-to-noise-power spectral density ratio) analysis revealed that the CDMA system exhibited a BER of 0.0026101, whereas the IDMA system achieved a significantly lower BER of 0.0004015, reflecting an 18.25% improvement in error performance. Moreover, the proposed Gold sequence interleaver, when integrated with LDPC, outperformed conventional interleavers including random, convolutional, and tree interleavers by attaining the lowest BER of 0.001312500 at 9 dB. These findings demonstrated that the Gold sequence-based LDPC-IDMA system achieved near-optimal performance while maintaining low computational complexity, making it suitable for practical 5G implementations.
1. A. Solyman, and Yahya, Khalid. Evolution of wireless communication networks: from 1G to 6G and future perspective. International Journal of Electrical and Computer Engineering (IJECE). 2022, 12. 3943. 10.11591/ijece.v12i4.pp3943-3950.
2. M. Asghar, S. Memon, and J. Hämäläinen. Evolution of Wireless Communication to 6G: Potential Applications and Research Directions. Sustainability. 2022. 14. 6356. 10.3390/su14106356.
3. B. Panda, D. Senanayake, S. Gunathilake, and P. Singh. A Survey of Non-orthogonal Multiple Access for Internet of Things and Future Wireless Networks. Springer Nature. 2023, Pp. 199-210. https://doi.org/10.1007/978-3-031-47942-7_18.
4. S. A., Shuaibu, S. N., John, J. S., Mommoh, E., Noma-Osaghe, A. A., Ahmad, and H.I., Bulama. Development of an Adaptive Pathloss Prediction Model Using NeuroFuzzy Systems for Wireless Optimization in Urban Areas. International Research Journal of Engineering and Technology (IRJET). 2024, 11(12), 424 – 429. https://www.irjet.net/archives/V11/i12/IRJET-
a. V11I1261.pdf.
5. A.R. Mishra. Fundamentals of Network Planning and Optimization 2G/3G/4G: Evolution to 5G, 2nd edn. Wiley, New York, 2018. ISBN: 9781119331711.
6. Solyman and K. Yahya. "Evolution of Wireless Communication Networks: From 1G to 6G and Future Perspective." International Journal of Electrical and Computer Engineering (IJECE), 2022, vol. 12, pp. 3943–3950. https://doi.org/10.11591/ijece.v12i4.pp3943-3950.
7. M.Z. Asghar, S.A. Memon, and J. Hämäläinen. "Evolution of Wireless Communication to 6G: Potential Applications and Research Directions." MDPI Journal of Sustainability, 2022, vol. 14, no. 6356. https://doi.org/10.3390/su14106356.
8. C. Teodorescu, A. Durnoi, and V. Vargas. "The Rise of the Mobile Internet: Tracing the Evolution of Portable Devices." Proceedings of the International Conference on Business Excellence, 2023, vol. 17, pp. 1645–1654. https://doi.org/10.2478/picbe-2023-0147.
9. Jehan, Ayesha & Zeeshan, Muhammad. (2022). Comparative Performance Analysis of Code-Domain NOMA and Power-Domain NOMA. Proceedings of the 2022 16th International Conference on Ubiquitous Information Management and Communication, IMCOM 2022, Pp 1-6. 10.1109/IMCOM53663.2022.9721725.
10. Mobasshir Mahbub, Raed M. Shubair, Contemporary advances in multi-access edge computing: A survey of fundamentals, architecture, technologies, deployment cases, security, challenges, and directions, Journal of Network and Computer Applications,2023 Volume 219, 103726, https://doi.org/10.1016/j.jnca.2023.103726.
11. T. Ha. A SURVEY ON NOMA WITH THE AID OF INTELLIGENT REFLECTING SURFACE IN WIRELESS COMMUNICATION. International Journal of Research -GRANTHAALAYAH. 2024. 12. 10.29121/granthaalayah.v12.i7.2024.5718.
12. Z. Liu and L. L. Yang. Sparse or Dense: A Comparative Study of Code-Domain NOMA Systems. 2020. arXiv:2009.04148v1
13. V. Vikas, K. Deka, S. Sharma and A. Rajesh, "ADMM-Based Detector for Large-Scale MIMO Dense Code-Domain NOMA Systems," in IEEE Transactions on Vehicular Technology, vol. 73, no. 11, pp. 17024-17040, Nov. 2024, doi: 10.1109/TVT.2024.3424690.
14. G. Sanjeev. Non-Orthogonal Multiple Access. Advance computing and Communication. 2019, 3(2). https://journal.accsindia.org/show.article.php?id=42
15. Sony, D. and Keerthi, P. and Aditya, O. and Sravya, N., Simulation and Performance Analysis of Interleave Division Multiple Access (IDMA) in Comparision with Code Division Multiple Access (CDMA) (2021). Asian Journal of Applied Science and Technology (AJAST), Volume 5, Issue 2, Pages 90-94, April-June 2021, Available at SSRN: https://ssrn.com/abstract=3874604.
16. I., Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. HAN, M. D. J. Piran and D. Y. Suh. A Systematic Review on NOMA Variants for 5G and Beyond. IEEE ACCESS. 2021. 10.1109/ACCESS.2021.3081601.
17. T. V. Tai, M. P. Nhut Tan, L. H. Nam, N. V. Ha and T. T. Thao Nguyen, "Convergence Evaluation of OFDMA-IDMA Combination Based on IEEE 802.11ax," 2024 16th International Conference on Knowledge and Smart Technology (KST), Krabi, Thailand, 2024, pp. 248-253, doi: 10.1109/KST61284.2024.10499693.
18. H. Marne, and P. Mukherji. Performance Enhancement of Bit Error Rate with Increased Capacity using Modified SIC-MUD for Polar Code based OFDM-IDMA System for 5G. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2019, 8(9S3): 192-200.
19. P. Agarwal and M. K. Shukla . MITA interleaver for OFDM-IDMA and SCFDMA-IDMA techniques using QPSK modulation over PLC. Bulletin of Electrical Engineering and Informatics. 2022. 11(3): 1418– 1427.
20. M. Jadhav, V. Deshpande, D. Midhunchakkaravarthy, and D. Waghole. Improving 5G network performance for OFDM-IDMA system resource management optimization using bio-inspired algorithm with RSM, Computer Communications, 2022, Volume 193, Pp. 23-37, https://doi.org/10.1016/j.comcom.2022.06.031.
21. M. Kawata, K. Tateishi, and K. Higuchi. Performance Evaluation of IDMA-Based Random Access with Various Structures of Interference Canceller. IEICE Transactions on Communications. 2020, E103.B. 10.1587/transcom.2019EBP3220.
22. D. Dinesh, S. Devadoss and R, Shantha. Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications. Etri Journal. 2023, 46. 10.4218/etrij.2023-0002.
23. J. Zhang. Performance Enhancement of IDMA System by Power and LDPC Code Optimization. International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019) 2019. 10.2991/wcnme-19.2019.25.
24. M. A. S. Al-Adwani, and H. Hamdoon. Simulation and Performance Evaluation of Non-Orthogonal IDMA for Future Wireless Networks. Journal of Engineering Science and Technology, 2019, 14(4): 1835 – 1850.
25. A. Bala, J. D. Jiya, E. E. Omizegba, S. Y. Musa, M. B. Aminu, and H. M. Sabo. Multi-Objective Optimization Power Control for DS-CDMA Using Bacterial Foraging Algorithm. International Journal of Engineering, Technology, Creativity and Innovation. 2019, 2(3): 1-21.
26. M. A. Charar, and Z. Guennoun. Energy Efficient Power Control for Device to Device Communication in 5G Networks. International Journal of Electrical and Computer Engineering (IJECE). 2020, 10(4), 4118 - 4135.
27. X. Wang, Z. Wang and Q. Liang. Outage Throughput Capacity of Hybrid Wireless Networks Over Fading Channels. IEEE Access: Special Section on New Waveform Design and Air-Interface for Future Heterogeneous Network Towards 5G, 8 2020: 867-875.
28. S. Bajpai and D. K. Srivastava (2015). Comparative Analysis of OFDM IDMA Scheme by Varying the Users. International Journal for Scientific Research & Development (IJSRD), 3(1): 1067 - 1069.
29. I. K. Abboud, F. A. Muaayed , and A. A. Nasir. Performance Analysis of Interleave Division Multiple Access System. International Journal of Open Information Technologies. 2019, 7(6). file:///C:/Users/Hp/Downloads/performance-analysis-of-interleave-division-multiple-access-system%20(1).pdf
30. Hu, Y., Ping, L. (2019). Interleave Division Multiple Access (IDMA). In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_13
31. S. Dixit, V. Shukla, and M. K. Shukla . Progressive Pattern Orthogonal Interleaver Set for Interleave Division Multiple Access Based, Non Orthogonal Multiple Access Schemes: Beyond 5G Perspective. International Journal of Electrical Engineering, 2022, 73(6): 419 - 425.
32. Wang Z, An Q, Zhu Z, Fang H, Huang Z. Blind Additive Gaussian White Noise Level Estimation from a Single Image by Employing Chi-Square Distribution. Entropy. 2022; 24(11):1518. https://doi.org/10.3390/e24111518
33. A. J. Rojas, "Nonminimum Phase Zeros Effect on the Signal-to-Noise Ratio Channel Input Constraint in Continuous Time," 2024 American Control Conference (ACC), Toronto, ON, Canada, 2024, pp. 1281-1286, doi: 10.23919/ACC60939.2024.10644579
34. R. Mahmoud and S. Mohamed. New Mathematical Properties For Rayleigh distribution. Jurnal Matematika, Statistika dan Komputasi. 2022, 19. 223-234. 10.20956/j.v19i1.21946.
Copyright (c) 2025 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.