Leveraging AI for Intelligent Oilfield Development: A Pathway to Digital Transformation
Harnessing AI for Enhanced Efficiency and Sustainability in the Oil and Gas Industry
Artificial intelligence (AI) technology in the oil and gas sector is set to tackle significant issues, including environmental sensitivity and intricate production procedures. Recent breakthroughs in artificial intelligence have enabled the digital transformation and intelligent enhancement of petroleum firms. This article examines the developmental patterns of AI technology, emphasizing its applicability in the oil and gas industry. We evaluate AI technology implementation in domestic and foreign petroleum technology service organizations by evaluating industry features and business circumstances. The principal application domains of AI in the oil and gas sector are: dynamic reservoir analysis, sophisticated history matching, numerical simulation proxy modeling, and optimization of production plans. We underscore the need to dive into the issues encountered in developing oil and gas reservoirs by promoting advances in data standards, intelligent oil field management, and collaborative platforms. The "three modernizations" are essential for sophisticated study and management of reservoirs, enabling the rapid formulation of focused development plans. The article examines the future possibilities of AI technology, emphasizing the growing need for AI in developing digital oil fields in China. The results provide critical insights for the continuous digital transformation of oil and gas sector, highlighting AI substantial impact on improving operational efficiency and sustainability.
T. Wang, Q. Wei, W. Xiong, Q. Wang, J. Fang, X. Wang, G. Liu, C. Jin, J. Wang, Current Status and Prospects of Artificial Intelligence Technology Application in Oil and Gas Field Development, ACS Omega (2024). https://doi.org/10.1021/acsomega.3c09229.
B. Liu, M.-R. Mohammadi, Z. Ma, L. Bai, L. Wang, Y. Xu, M. Ostadhassan, A. Hemmati-Sarapardeh, Evolution of porosity in kerogen type I during hydrous and anhydrous pyrolysis: Experimental study, mechanistic understanding, and model development, Fuel 338 (2023) 127149. https://doi.org/10.1016/j.fuel.2022.127149.
B. Aslam, B. Yan, Z. Tariq, S. Krogstad, K.-A. Lie, Rapid Simulation and Optimization of Geological CO2 Sequestration Using Coarse Grid Network Model, Onepetro (2023). https://doi.org/10.2118/215306-ms.
B. Liu, Y. Song, K. Zhu, P. Su, X. Ye, W. Zhao, Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential, Marine and Petroleum Geology 120 (2020) 104569. https://doi.org/10.1016/j.marpetgeo.2020.104569.
S.D. Shelare, P.N. Belkhode, K.C. Nikam, L.D. Jathar, K. Shahapurkar, M.E.M. Soudagar, I. Veza, T.M.Y. Khan, M.A. Kalam, A.-S. Nizami, M. Rehan, Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production, Energy 282 (2023) 128874. https://doi.org/10.1016/j.energy.2023.128874.
H. Li, H. Yu, N. Cao, H. Tian, S. Cheng, Applications of Artificial Intelligence in Oil and Gas Development, Archives of Computational Methods in Engineering 28 (2020) 937–949. https://doi.org/10.1007/s11831-020-09402-8.
R. Roscher, B. Bohn, M.F. Duarte, J. Garcke, Explainable Machine Learning for Scientific Insights and Discoveries, IEEE Access 8 (2020) 42200–42216. https://doi.org/10.1109/access.2020.2976199.
R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, M. Fischl, Artificial intelligence in supply chain management: A systematic literature review, Journal of Business Research 122 (2020) 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009.
L. Kuang, H. Liu, Y. Ren, K. Luo, M. Shi, J. Su, X. Li, Application and development trend of artificial intelligence in petroleum exploration and development, Petroleum Exploration and Development 48 (2021) 1–14. https://doi.org/10.1016/s1876-3804(21)60001-0.
H. Wang, Y. Xu, B. Shi, C. Zhu, Z. Wang, Optimization and intelligent control for operation parameters of multiphase mixture transportation pipeline in oilfield: A case study, Journal of Pipeline Science and Engineering 1 (2021) 367–378. https://doi.org/10.1016/j.jpse.2021.07.002.
K. Sheng, Y. He, M. Du, G. Jiang, The Application Potential of Artificial Intelligence and Numerical Simulation in the Research and Formulation Design of Drilling Fluid Gel Performance, Gels 10 (2024) 403. https://doi.org/10.3390/gels10060403.
S. Yujiang, W. Juan, W. Hongfang, Y. Zhuo, W. Hongwei, Y. Weihua, Construction and application of collaborative environment for oil and gas reservoir research based on E&P Dream Cloud, Zhongguo Shiyou Kantan 25 (2020) 15–22. https://doi.org/10.3969/j.issn.1672-7703.2020.05.003.
X. Ma, A golden era for natural gas development in the Sichuan Basin, Natural Gas Industry B 4 (2017) 163–173. https://doi.org/10.1016/j.ngib.2017.08.001.
K. Ghorayeb, K. Mogensen, N.E. Droubi, C.K. Kloucha, H. Mustapha, Holistic prediction of hydrocarbon fluids pressure–volume-temperature laboratory data using machine learning, Fuel 369 (2024) 131695. https://doi.org/10.1016/j.fuel.2024.131695.
K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, J. Yao, training effective deep reinforcement learning agents for real-time life-cycle production optimization, Journal of Petroleum Science and Engineering 208 (2021) 109766. https://doi.org/10.1016/j.petrol.2021.109766.
D. Jia, H. Liu, J. Zhang, B. Gong, X. Pei, Q. Wang, Q. Yang, Data-driven optimization for fine water injection in a mature oil field, Petroleum Exploration and Development 47 (2020) 674–682. https://doi.org/10.1016/s1876-3804(20)60084-2.
A. Samnioti, V. Gaganis, Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part II, Energies 16 (2023) 6727. https://doi.org/10.3390/en16186727.
B.M. Negash, A.D. Yaw, Artificial neural network-based production forecasting for a hydrocarbon reservoir under water injection, Petroleum Exploration and Development 47 (2020) 383–392. https://doi.org/10.1016/s1876-3804(20)60055-6.
D. Balashov, D. Egorov, B. Belozerov, S. Slivkin, Prediction of Wells Productive Characteristics with the Use of Unsupervised Machine Learning Algorithms, Onepetro (2019). https://doi.org/10.2118/196857-ms.
I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science 12 (2018) 463–491. https://doi.org/10.1039/c8ee01157e.
J. Sun, X. Ma, M. Kazi, Comparison of Decline Curve Analysis DCA with Recursive Neural Networks RNN for Production Forecast of Multiple Wells, SPE Western Regional Meeting (2018). https://doi.org/10.2118/190104-ms.
A. Waqar, I. Othman, R.A. González-Lezcano, Challenges to the Implementation of BIM for the Risk Management of Oil and Gas Construction Projects: Structural Equation Modeling Approach, Sustainability 15 (2023) 8019. https://doi.org/10.3390/su15108019.
F. Jiang, L. Huo, D. Chen, L. Cao, R. Zhao, Y. Li, T. Guo, The controlling factors and prediction model of pore structure in global shale sediments based on random forest machine learning, Earth-Science Reviews 241 (2023) 104442. https://doi.org/10.1016/j.earscirev.2023.104442.
C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, P. Williams, Foundations for Smarter Cities, IBM Journal of Research and Development 54 (2010) 1–16. https://doi.org/10.1147/jrd.2010.2048257.
J.S. Dramsch, 70 years of machine learning in geoscience in review, in: Advances in Geophysics, 2020: pp. 1–55. https://doi.org/10.1016/bs.agph.2020.08.002.
G.J. Moridis, T.A. Blasingame, C.M. Freeman, Analysis of Mechanisms of Flow in Fractured Tight-Gas and Shale-Gas Reservoirs, All Days (2010). https://doi.org/10.2118/139250-ms.
[M. Kaleta, G. Van Essen, J. Van Doren, R. Bennett, B. Van Beest, P. Van Den Hoek, J. Brint, T. Woodhead, Coupled Static/Dynamic Modeling for Improved Uncertainty Handling, All Days (2012). https://doi.org/10.2118/154400-ms.
D. Li, X. Liu, W. Zha, J. Yang, D. Lu, Automatic well test interpretation based on convolutional neural network for a radial composite reservoir, Petroleum Exploration and Development 47 (2020) 623–631. https://doi.org/10.1016/s1876-3804(20)60079-9.
A. Sleptsov, L. Medvedeva, O. Marinina, O. Savenok, Feasibility Study on the Applicability of Intelligent Well Completion, Processes 12 (2024) 1565. https://doi.org/10.3390/pr12081565.
B. Aslam, B. Yan, M. Hidayat, S. Husenido, B. Swadesi, P. Permadi, T. Marhaendrajana, Data driven approach using capacitance resistance model to determine polymer in-situ retention level, Geoenergy Science and Engineering 229 (2023) 212043. https://doi.org/10.1016/j.geoen.2023.212043.
B. Liu, J. Sun, Y. Zhang, J. He, X. Fu, L. Yang, J. Xing, X. Zhao, Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China, Petroleum Exploration and Development 48 (2021) 608–624. https://doi.org/10.1016/s1876-3804(21)60049-6.
B. Liu, Y. Song, K. Zhu, P. Su, X. Ye, W. Zhao, Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential, Marine and Petroleum Geology 120 (2020) 104569. https://doi.org/10.1016/j.marpetgeo.2020.104569.
B. Yan, C. Li, Z. Tariq, K. Zhang, Estimation of heterogeneous permeability using pressure derivative data through an inversion neural network inspired by the Fast-Marching Method, Geoenergy Science and Engineering 228 (2023) 211982. https://doi.org/10.1016/j.geoen.2023.211982.
B. Liu, H. Wang, X. Fu, Y. Bai, L. Bai, M. Jia, B. He, Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China, AAPG Bulletin 103 (2019) 405–432. https://doi.org/10.1306/08031817416.
Z. Xu, B. Yan, M. Gudala, Z. Tariq, A Robust General Physics-Informed Machine Learning Framework for Energy Recovery Optimization in Geothermal Reservoirs, Onepetro (2023). https://doi.org/10.2118/214352-ms.
S. Meng, D. Li, X. Liu, Z. Zhang, J. Tao, L. Yang, Z. Rui, Study on dynamic fracture growth mechanism of continental shale under compression failure, Gas Science and Engineering 114 (2023) 204983. https://doi.org/10.1016/j.jgsce.2023.204983.
Z. Tariq, B. Yan, S. Sun, An Intelligent Safe Well Bottom-Hole Pressure Monitoring of CO2 Injection Well into Deep Saline: A coupled Hydro-Mechanical Approach, Onepetro (2023). https://doi.org/10.2118/213315-ms.
J. Tao, S. Meng, D. Li, Z. Rui, H. Liu, J. Xu, Analysis of CO2 effects on porosity and permeability of shale reservoirs under different water content conditions, Geoenergy Science and Engineering 226 (2023) 211774. https://doi.org/10.1016/j.geoen.2023.211774.
A.M. Salem, M.S. Yakoot, O. Mahmoud, Addressing Diverse Petroleum Industry Problems Using Machine Learning Techniques: Literary Methodology─Spotlight on Predicting Well Integrity Failures, ACS Omega 7 (2022) 2504–2519. https://doi.org/10.1021/acsomega.1c05658.
B. Yuan, D.A. Wood, W. Yu, Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015), Journal of Natural Gas Science and Engineering 26 (2015) 1414–1421. https://doi.org/10.1016/j.jngse.2015.09.001.
A. Hassan, M.S. Aljawad, M. Mahmoud, An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs, ACS Omega 6 (2021) 13654–13670. https://doi.org/10.1021/acsomega.1c00809.
M. Siwei, Z. Zihan, T. Jiaping, Z. Chuanqing, Y. Liu, X. Jianchun, A Novel Upscaling Method for Evaluating Mechanical Properties of the Shale Oil Reservoir Based on Cluster Analysis and Nanoindentation, Journal of Energy Resources Technology 145 (2023). https://doi.org/10.1115/1.4062248.
R.A. Azim, G. Hamada, Novel Correlation for Calculating Water Saturation in Shaly Sandstone Reservoirs Using Artificial Intelligence: Case Study from Egyptian Oil Fields, ACS Omega 7 (2022) 29666–29674. https://doi.org/10.1021/acsomega.2c01945.
H. Liu, Y. Huang, M. Cai, S. Meng, J. Tao, Practice and development suggestions of hydraulic fracturing technology in the Gulong shale oil reservoirs of Songliao Basin, NE China, Petroleum Exploration and Development 50 (2023) 688–698. https://doi.org/10.1016/s1876-3804(23)60420-3.
Z. Duan, Y. Zhang, F. Yang, M. Liu, Z. Wang, Y. Zhao, L. Ma, Research on controllable shock wave technology for in-situ development of tar-rich coal, Energy 288 (2023) 129706. https://doi.org/10.1016/j.energy.2023.129706.
B. Yuan, M. Zhao, S. Meng, W. Zhang, H. Zheng, Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing, Petroleum Exploration and Development 50 (2023) 1487–1496. https://doi.org/10.1016/s1876-3804(24)60482-9.
M. Gudala, S.K. Govindarajan, Z. Tariq, B. Yan, S. Sun, Numerical investigations and evaluation of a puga geothermal reservoir with horizontal wells using a fully coupled thermo-hydro-geomechanical model (THM) and EDAS associated with AHP, Geoenergy Science and Engineering 228 (2023) 212035. https://doi.org/10.1016/j.geoen.2023.212035.
J. Li, J. Wei, Y. Chen, A. Wang, X. Zhou, Analysis of asynchronous/inter-fracture injection-production mechanism under the condition of five-spot vertical and horizontal well combination in low permeability oil reservoirs, Energy 308 (2024) 132923. https://doi.org/10.1016/j.energy.2024.132923.
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications, IEEE Communications Surveys & Tutorials 17 (2015) 2347–2376. https://doi.org/10.1109/comst.2015.2444095.
J. Zhi, Y. Liu, J. Chen, N. Jiang, D. Xu, L. Bo, G. Qu, Performance Evaluation and Oil Displacement Effect of Amphiphilic Polymer Heavy Oil Activator, Molecules 28 (2023) 5257. https://doi.org/10.3390/molecules28135257.
Q. Sun, N. Zhang, M. Fadlelmula, Y. Wang, Structural regeneration of fracture-vug network in naturally fractured vuggy reservoirs, Journal of Petroleum Science and Engineering 165 (2017) 28–41. https://doi.org/10.1016/j.petrol.2017.11.030.
W. Pu, M. He, X. Yang, J. Xie, Y. Chu, R. Liu, Selection of emulsification system for high temperature and high salt reservoir and evaluation of reservoir adaptability, Journal of Dispersion Science and Technology 44 (2021) 1021–1030. https://doi.org/10.1080/01932691.2021.1985514.
F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, Digital Twin in Industry: State-of-the-Art, IEEE Transactions on Industrial Informatics 15 (2019) 2405–2415. https://doi.org/10.1109/tii.2018.2873186.
J. Dai, Y. Ni, D. Gong, Z. Feng, D. Liu, W. Peng, W. Han, Geochemical characteristics of gases from the largest tight sand gas field (Sulige) and shale gas field (Fuling) in China, Marine and Petroleum Geology 79 (2016) 426–438. https://doi.org/10.1016/j.marpetgeo.2016.10.021.
X. Liu, S.-W. Meng, Z.-Z. Liang, C. Tang, J.-P. Tao, J.-Z. Tang, Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling, Petroleum Science 20 (2022) 1488–1512. https://doi.org/10.1016/j.petsci.2022.10.004.
K. Tao, J. Cao, Y. Wang, J. Mi, W. Ma, C. Shi, Chemometric Classification of Crude Oils in Complex Petroleum Systems Using t-Distributed Stochastic Neighbor Embedding Machine Learning Algorithm, Energy & Fuels 34 (2020) 5884–5899. https://doi.org/10.1021/acs.energyfuels.0c01333.
B. Yan, Z. Xu, M. Gudala, Z. Tariq, T. Finkbeiner, Reservoir Modeling and Optimization Based on Deep Learning with Application to Enhanced Geothermal Systems, Onepetro (2023). https://doi.org/10.2118/212614-ms.
B. Yuan, D.A. Wood, W. Yu, Stimulation and hydraulic fracturing technology in natural gas reservoirs: Theory and case studies (2012–2015), Journal of Natural Gas Science and Engineering 26 (2015) 1414–1421. https://doi.org/10.1016/j.jngse.2015.09.001.
J. Torres-Liñán, M. García-Rollán, J.M. Rosas, J. Rodríguez-Mirasol, T. Cordero, Deactivation of a Biomass-Derived Zirconium-Doped Phosphorus-Containing Carbon Catalyst in the Production of Dimethyl Ether from Methanol Dehydration, Energy & Fuels 35 (2021) 17225–17240. https://doi.org/10.1021/acs.energyfuels.1c01721.
D. Kang, J. Ma, Y.-P. Zhao, Perspectives of Machine Learning Development on Kerogen Molecular Model Reconstruction and Shale Oil/Gas Exploitation, Energy & Fuels 37 (2022) 98–117. https://doi.org/10.1021/acs.energyfuels.2c03307.
S. Chen, H. Yu, M. Lu, M. Lebedev, X. Li, Z. Yang, W. Cheng, Y. Yuan, S. Ding, L. Johnson, A New Approach to Calculate Gas Saturation in Shale Reservoirs, Energy & Fuels 36 (2022) 1904–1915. https://doi.org/10.1021/acs.energyfuels.1c04067.
F. Sun, Y. Yao, G. Li, X. Li, Geothermal energy development by circulating CO2 in a U-shaped closed loop geothermal system, Energy Conversion and Management 174 (2018) 971–982. https://doi.org/10.1016/j.enconman.2018.08.094.
R. Abreu, C. Mejia, D. Roehl, Inverse analysis of hydraulic fracturing tests based on artificial intelligence techniques, International Journal for Numerical and Analytical Methods in Geomechanics 46 (2022) 2582–2602. https://doi.org/10.1002/nag.3419.
W. Niu, Y. Sun, X. Yang, J. Lu, S. Zhao, R. Yu, P. Liang, J. Zhang, Toward Production Forecasting for Shale Gas Wells Using Transfer Learning, Energy & Fuels 37 (2023) 5130–5142. https://doi.org/10.1021/acs.energyfuels.3c00234.
C. Zou, D. Dong, Y. Wang, X. Li, J. Huang, S. Wang, Q. Guan, C. Zhang, H. Wang, H. Liu, W. Bai, F. Liang, W. Lin, Q. Zhao, D. Liu, Z. Yang, P. Liang, S. Sun, Z. Qiu, Shale gas in China: Characteristics, challenges and prospects (II), Petroleum Exploration and Development 43 (2016) 182–196. https://doi.org/10.1016/s1876-3804(16)30022-2.
J. Chen, Y. Lv, T. Fan, Research on the evolution and driving factors of digitalization of energy in China—A new perspective based on coupling coordination, Heliyon 9 (2023) e14138. https://doi.org/10.1016/j.heliyon.2023.e14138.
Z. Bi, K.L. Yung, A.W.H. Ip, Y.M. Tang, C.W.J. Zhang, L. Da Xu, The State of the Art of Information Integration in Space Applications, IEEE Access 10 (2022) 110110–110135. https://doi.org/10.1109/access.2022.3215154.
M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, E.K. Markakis, A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues, IEEE Communications Surveys & Tutorials 22 (2020) 1191–1221. https://doi.org/10.1109/comst.2019.2962586.
F. Sun, Y. Yao, G. Li, X. Li, Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid, Energy Conversion and Management 171 (2018) 1529–1539. https://doi.org/10.1016/j.enconman.2018.06.092.
S. Ghosh, S.K. Singh, V.K. Yadav, Attenuation of hotspot phenomenon in PV systems, Energy Sources Part a Recovery Utilization and Environmental Effects 45 (2023) 11788–11802. https://doi.org/10.1080/15567036.2023.2264811.
Y. Li, S. Wang, X. He, J. Xiang, Investigation of consolidation/thermal insulation property and mechanism of casing cement in the heat-insulating section of geothermal production well, Energy Sources Part a Recovery Utilization and Environmental Effects 45 (2023) 11566–11585. https://doi.org/10.1080/15567036.2023.2262953.
F. Sun, Y. Yao, G. Li, X. Li, Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells, Energy 158 (2018) 760–773. https://doi.org/10.1016/j.energy.2018.06.084.
F. Sun, Y. Yao, G. Li, X. Li, Numerical Simulation of Supercritical-Water Flow in Concentric-Dual-Tubing Wells, SPE Journal 23 (2018) 2188–2201. https://doi.org/10.2118/191363-pa.
F. Sun, Y. Yao, X. Li, the heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique, Energy 143 (2017) 995–1005. https://doi.org/10.1016/j.energy.2017.11.028.
M. Yue, T. Song, Q. Chen, M. Yu, Y. Wang, J. Wang, S. Du, H. Song, Prediction of effective stimulated reservoir volume after hydraulic fracturing utilizing deep learning, Petroleum Science and Technology 41 (2022) 1934–1956. https://doi.org/10.1080/10916466.2022.2096635
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.