Leveraging Big Data to Improve Biometric Algorithms for Real-Time Authentication in Digital Commerce
The rapid growth of digital commerce has intensified the need for secure, efficient, and user-friendly authentication methods. Traditional authentication techniques, such as passwords and PINs, are increasingly vulnerable to cyber threats, prompting the exploration of more advanced solutions. This research investigates the integration of big data with biometric authentication systems to improve real-time identity verification processes in digital commerce. By leveraging big data analytics, biometric algorithms can achieve higher accuracy, scalability, and adaptability, providing more robust security and a seamless user experience.
The study highlights how big data enables the enhancement of biometric algorithms through continuous learning, real-time data processing, and the combination of multiple biometric modalities (e.g., fingerprint, facial recognition, and voice). It explores the potential of machine learning and artificial intelligence to fine-tune biometric systems, addressing challenges such as false acceptance/rejection rates and improving system responsiveness. Furthermore, the research identifies key challenges, including data privacy concerns, algorithmic bias, ethical issues, and technical constraints related to processing large volumes of biometric data in real-time.
The research also examines the future trajectory of biometric authentication in digital commerce, emphasizing advancements in multi-modal biometrics, quantum encryption, and continuous authentication. As these technologies evolve, they promise to make biometric systems more secure, efficient, and accessible. Despite the challenges, the integration of big data in biometric authentication holds great potential to redefine the landscape of digital commerce by offering a safer, more user-friendly experience for consumers worldwide.
Harinandan, R., Kumar, M., Vamshi, P., Padma, C. R., Krishnappa, K. H., & Raghunandan, J. R. (2024, August). Design and Development of a Real-time Monitoring System for ACL Injury Prevention. In 2024 2nd International Conference on Networking, Embedded and Wireless Systems (ICNEWS) (pp. 1-6). IEEE.
Khurana, R. (2020). Fraud detection in ecommerce payment systems: The role of predictive ai in real-time transaction security and risk management. International Journal of Applied Machine Learning and Computational Intelligence, 10(6), 1-32.
Córdoba, P. C. L., & Vázquez, C. G. (2019, October). Industria 4.0, clave para la competitividad de las PYME proveedoras del sector automotriz del estado de Guanajuato, México. In IV Congreso Internacional de Investigación de la Red Radar| Colombia| 2019.
KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
Sohail, M., Shakeel, S., Kumari, S., Bharti, A., Zahid, F., Anwar, S., ... & Raziuddin, M. (2015). Research Article Prevalence of Malaria Infection and Risk Factors Associated with Anaemia among Pregnant Women in Semiurban Community of Hazaribag, Jharkhand, India.
Mohammed¹, A. A., & Koty, A. The Medicinal Value and the Therapeutic Application of The Leaves of Carica Papaya Linnaeus: A Systematic Review.
Syed, Mazahirul Islam, Md Sohail, Abdul Ilah, and Sozan A. Ali Ismeail. "Andrographis Paniculata Nees’s Protective Role on Cytarabine Induced Oxidative Damage in Chick Embryo."
Chico, E., & Córdoba, P. (2018). Nuevo modelo de exportación en el comercio: México-Japón para la calabaza Kabocha. Primer Coloquio de Investigación en las Ciencias Economico-Administraivas de la Universidad de Guanajuato. Universidad de Guanajuato, 1-12.
Gagan Kumar Patra, Chandrababu Kuraku, Siddharth Konkimalla, Venkata Nagesh Boddapati, Manikanth Sarisa, An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques, International Journal of Computer Engineering and Technology (IJCET) 12(3), 2021, pp. 102-113. https://iaeme.com/Home/issue/IJCET?Volume=12&Issue=3
Chandrababu Kuraku, Shravan Kumar Rajaram, Hemanth Kumar Gollangi, Venkata Nagesh Boddapati, Gagan Kumar Patra (2024). Advanced Encryption Techniques in Biometric Payment Systems: A Big Data and AI Perspective. Library Progress International, 44(3), 2447-2458.
Gali, Manvitha, and Aditya Mahamkali. “A Distributed Deep Meta Learning based Task Offloading Framework for Smart City Internet of Things with Edge-Cloud Computing.” Journal of Internet Services and Information Security 12, no. 4 (November 30, 2022): 224–37. https://doi.org/10.58346/jisis.2022.i4.016.
Gali, None Manvitha, and None Aditya Mahamkali. “Health Care Internet of Things (IOT) During Pandemic –A Review.” Journal of Pharmaceutical Negative Results, October 19, 2022, 572–74. https://doi.org/10.47750/pnr.2022.13.s07.075.
Mahamkali, Aditya, Manvitha Gali, Elangovan Muniyandy, and Ajith Sundaram. “IoT-Empowered Drones: Smart Cyber security Framework with Machine Learning Perspective.” IEEE 2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS) 101 (October 27, 2023): 1–9. https://doi.org/10.1109/iccams60113.2023.10525903.
Sharma, Aditi, Manvitha Gali, Aditya Mahamkali, K Raghavendra Prasad, Pavitar Parkash Singh, and Amit Mittal. “IoT-enabled Secure Service-Oriented Architecture (IOT-SOA) through Blockchain.” IEEE International Conference on Smart Technologies for Smart Nation (SmartTechCon), August 18, 2023, 264–68. https://doi.org/10.1109/smarttechcon57526.2023.10391590.
Kulkarni, Chaitanya, Zekrifa Djabeur Mohamed Seifeddine, Manvitha Gali, and Sheshang Degadwala. “Mining intelligence hierarchical feature for malware detection over 5G network.” In CRC Press eBooks, 64–82, 2024. https://doi.org/10.1201/9781003470281-4.
Kumar, Akhilesh, Ismail Keshta, Jyoti Bhola, Mohammed Wasim Bhatt, Salman A. AlQahtani, and Manvitha Gali. “Application of Artificial Neural Network Unified with Fuzzy Logic for Systematic Stock Market Prediction.” Fluctuation and Noise Letters 23, no. 02 (July 28, 2023). https://doi.org/10.1142/s0219477524400017.
Hemanth Kumar G. et. al.(2024). Data Engineering Solutions: The impact of AI and ML on ERP systems and supply chain management. (2024). Nanotechnology Perceptions, 20(S9). https://doi.org/10.62441/nano-ntp.v20is9.47
Venkata Nagesh Boddapati, Manikanth Sarisa, Mohit Surender Reddy, Janardhana Rao Sunkara, Shravan Kumar Rajaram, Sanjay Ramdas Bauskar, Kiran Polimetla. Data migration in the cloud database: A review of vendor solutions and challenges . Int J Comput Artif Intell 2022;3(2):96-101. DOI: 10.33545/27076571.2022.v3.i2a.110
Tani, K. A. (2021). Visual semiotics in the structure of Kufic calligraphy. International Journal of Visual and Performing Arts, 3(2), 110-116.
S. E. V. S. Pillai and K. Polimetla, "Enhancing Network Privacy through Secure Multi-Party Computation in Cloud Environments," 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2024, pp. 1-6, doi: 10.1109/ICICACS60521.2024.10498662.
S. E. Vadakkethil Somanathan Pillai and K. Polimetla, "Analyzing the Impact of Quantum Cryptography on Network Security," 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2024, pp. 1-6, doi: 10.1109/ICICACS60521.2024.10498417.
Remaoun, H., & Bensalah, M. (2006). Image, Mémoire, Histoire. Les représentations iconographiques en Algérie et au Maghreb. Crasc.
Chandrakanth Rao Madhavaram, Eswar Prasad Galla, Hemanth Kumar Gollangi, Gagan Kumar Patra, Chandrababu Kuraku, Siddharth Konkimalla, Kiran Polimetla. An analysis of chest x-ray image classification and identification during COVID-19 based on deep learning models. Int J Comput Artif Intell 2022;3(2):86-95. DOI: 10.33545/27076571.2022.v3.i2a.109
Venkata Nagesh Boddapati, Eswar Prasad Galla, Janardhana Rao Sunkara, Sanjay Ramdas Bauskar, Gagan Kumar Patra, Chandrababu Kuraku, Chandrakanth Rao Madhavaram, 2021. "Harnessing the Power of Big Data: The Evolution of AI and Machine Learning in Modern Times", ESP Journal of Engineering & Technology Advancements, 1(2): 134-146.
Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.
Remaoun, H., & Hennia, A. (2013). Les espaces publics au Maghreb. Au carrefour du politique, du religieux, de la société civile, des médias et des NTIC. Les ouvrages du CRASC, 605.
Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Gollangi, H. K. (2022). Predicting disease outbreaks using AI and Big Data: A new frontier in healthcare analytics. European Chemical Bulletin. https://doi.org/10.53555/ecb.v11:i12.17745
S. E. V. S. Pillai, A. A. El Said and W. -C. Hu, "A Self-Reconfigurable System for Mobile Health Text Misinformation Detection," 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN, USA, 2022, pp. 242-247, doi: 10.1109/eIT53891.2022.9813840.
keywords: {COVID-19; Recurrent neural networks; Pandemics; Artificial neural networks; Natural language processing; Fake news; Information technology},
S. E. V. S. Pillai and W. -C. Hu, "Misinformation Detection Using an Ensemble Method with Emphasis on Sentiment and Emotional Analyses," 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA), Orlando, FL, USA, 2023, pp. 295-300, doi: 10.1109/SERA57763.2023.10197706.
Shashidhar, R., Aditya, V., Srihari, N., Subhash, M. H., & Krishnappa, K. H. (2023, November). Empowering Investors: Insights from Sentiment Analysis, FFT, and Regression in Indian Stock Markets. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 01-06). IEEE.
Zavala, K. G., Rico, A. J., & Córdoba, P. C. L. (2021). Elementos esenciales que garantizan el gobierno abierto: diagnóstico mexicano. Vinculatégica EFAN, 7(2), 251-259.
Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
Syed, M. I., Sharma, M., Koty, A., Afroze, A., & Mabrouk, A. S. (2023). The nutritional values of papaya and the challenging role of yoga practices for weight loss in a society of Mumbai. Researchgate, Volume13. https://www.researchgate.net/publication/379436568 _The_nutritional_values_of_papaya_and_the_challenging_role_of_yoga_practices_for_weight_ loss_in_a_society_of_Mumbai
Fatima, S. (2024). PREDICTIVE MODELS FOR EARLY DETECTION OF CHRONIC DISEASES LIKE CANCER. Olaoye, G.
Fatima, S. (2024b). Harnessing machine learning for early prediction of diabetes onset in at risk populations. Researchgate, Volume 26(01). https://doi.org/10.13140/RG.2.2.18313.66404
https://iaeme.com/MasterAdmin/Journal_uploads/IJM/VOLUME_12_ISSUE_3/IJM_12_03_121.pdf
Janardhana Rao Sunkara, Sanjay Ramdas Bauskar, Chandrakanth Rao Madhavaram, Eswar Prasad Galla, Hemanth Kumar Gollangi, Data-Driven Management: The Impact of Visualization Tools on Business Performance, International Journal of Management (IJM), 12(3), 2021, pp. 1290-1298. https://iaeme.com/Home/issue/IJM?Volume=12&Issue=3
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_12_ISSUE_3/IJCET_12_03_012.pdf
Gagan Kumar Patra, Chandrababu Kuraku, Siddharth Konkimalla, Venkata Nagesh Boddapati, Manikanth Sarisa, An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques, International Journal of Computer Engineering and Technology (IJCET) 12(3), 2021, pp. 102-113. https://iaeme.com/Home/issue/IJCET?Volume=12&Issue=3
https://bpasjournals.com/library-science/index.php/journal/article/view/777
Chandrababu Kuraku, Shravan Kumar Rajaram, Hemanth Kumar Gollangi, Venkata Nagesh Boddapati, Gagan Kumar Patra (2024). Advanced Encryption Techniques in Biometric Payment Systems: A Big Data and AI Perspective. Library Progress International, 44(3), 2447-2458.
https://nano-ntp.com/index.php/nano/article/view/1657
Hemanth Kumar G. et. al.(2024). Data Engineering Solutions: The impact of AI and ML on ERP systems and supply chain management. (2024). Nanotechnology Perceptions, 20(S9). https://doi.org/10.62441/nano-ntp.v20is9.47
Zabihi, A., & Parhamfar, M. (2024). Frequency and Time Series Analysis of Surge Arrester in Power Distribution Systems. Advances in Engineering and Intelligence Systems, 3(03), 94-103.
Nguyen, Tuan T., Hoang H. Nguyen, Mina Sartipi, and Marco Fisichella. "LaMMOn: language model combined graph neural network for multi-target multi-camera tracking in online scenarios." Machine Learning 113, no. 9 (2024): 6811-6837.
Nguyen, T. T., Nguyen, H. H., Sartipi, M., & Fisichella, M. (2024). Real-time multi-vehicle multi-camera tracking with graph-based tracklet features. Transportation research record, 2678(1), 296-308.
Kenneth, E., & Ohia, P. (2021). Integrating Real-Time Drilling Fluid Monitoring and Predictive Analytics for Incident Prevention and Environmental Protection in Complex Drilling Operations. Journal of Artificial Intelligence Research, 1(1), 157-185.
Kenneth, E. (2020). Evaluating the Impact of Drilling Fluids on Well Integrity and Environmental Compliance: A Comprehensive Study of Offshore and Onshore Drilling Operations. Journal of Science & Technology, 1(1), 829-864.
Zabihi, Alireza, Mohammad Parhamfar, SSSR Sarathbabu Duvvuri, and Milad Abtahi. "Increase power output and radiation in photovoltaic systems by installing mirrors." Measurement: Sensors 31 (2024): 100946.
Predicting Foot Salvageability in Diabetic Foot Lesion: Comparison of Benin Diabetic Foot Severity Score and Wagner System. (2023). International Journal of Scientific Research and Management (IJSRM), 11(05), 851-856. https://doi.org/10.18535/ijsrm/v11i05.mp1
Challenges and Prospects of the National Health Insurance Scheme and Medical Service Delivery in The Nigerian Navy. (2023). International Journal of Scientific Research and Management (IJSRM), 11(04), 844-850. https://doi.org/10.18535/ijsrm/v11i04.mp08
Peng, L., Zabihi, A., Azimian, M., Shirvani, H., & Shahnia, F. (2022). Developing a robust expansion planning approach for transmission networks and privately-owned renewable sources. IEEE access, 11, 76046-76058.
https://espjeta.org/jeta-v1i2p116
Venkata Nagesh Boddapati, Eswar Prasad Galla, Janardhana Rao Sunkara, Sanjay Ramdas Bauskar, Gagan Kumar Patra, Chandrababu Kuraku, Chandrakanth Rao Madhavaram, 2021. "Harnessing the Power of Big Data: The Evolution of AI and Machine Learning in Modern Times", ESP Journal of Engineering & Technology Advancements, 1(2): 134-146.
S. E. Vadakkethil Somanathan Pillai and K. Polimetla, "Integrating Network Security into Software Defined Networking (SDN) Architectures," 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2024, pp. 1-6, doi: 10.1109/ICICACS60521.2024.10498703.
keywords: {Integrated circuits;Intrusion detection;Computer architecture;Network security;Software;Hazards;Safety;Networking;Dynamically;Architecture;Protection;Technology;Visitors},
S. E. Vadakkethil Somanathan Pillai and K. Polimetla, "Analyzing the Impact of Quantum Cryptography on Network Security," 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2024, pp. 1-6, doi: 10.1109/ICICACS60521.2024.10498417.
keywords: {Resistance;Quantum computing;Quantum entanglement;Receivers;Network security;Quantum state;Encryption;Cryptography;Computing;Protocols;Communication;Quantum},
Krutthika, H. K., & Aswatha, A. R. (2021). Implementation and analysis of congestion prevention and fault tolerance in Network on Chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712
Krutthika, H. K., & Aswatha, A. R. (2020). Design of efficient FSM-based 3D network on chip architecture. International Journal of Engineering Trends and Technology (IJETT), 68(10), 67–73. https://doi.org/10.14445/22315381/IJETT-V68I10P212
Krutthika, H. K., & Rajashekhara, R. (2019). Network on chip: A survey on router design and algorithms. International Journal of Recent Technology and Engineering (IJRTE), 7(6), 1687–1691. https://doi.org/10.35940/ijrte.F2131.037619
Krishnappa, K. H., Hiremath, M. M., & Manasa, R. (2024). Semiconductor fault diagnosis using deep learning-based domain adaption. International Journal of Intelligent Systems and Applications in Engineering, 12(9s). https://doi.org/10.18293/IJISAE4333
Krishnappa, K. H., & Nithin, V. N. (2023). Dictionary-based PLS approach to pharmacokinetic mapping in DCE-MRI using Tofts model. In ICT4SD 2023 Proceedings (Vol. 3, pp. 219–226). https://doi.org/10.1007/978-981-99-4932-8_21
Krutthika, H. K. (2019). Modelling of data delivery modes of next-generation SOC-NOC router. 2019 IEEE Global Conference for Advancement in Technology (GCAT). Bangalore, India. https://doi.org/10.1109/GCAT47503.2019.8978290
Madhura, R., Krishnappa, K. H., et al. (2023). Slack time analysis for APB timer using Genus synthesis tool. In ICT4SD 2023 Proceedings (Vol. 3, pp. 207–217). https://doi.org/10.1007/978-981-99-4932-8_20
Krishnappa, K. H., & Shashidhar, R. (2023). Detecting Parkinson's disease with prediction: A novel SVM approach. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE). Ballari, India. https://doi.org/10.1109/AIKIIE60097.2023.10390195
Venkata Nagesh Boddapati, Manikanth Sarisa, Mohit Surender Reddy, Janardhana Rao Sunkara, Shravan Kumar Rajaram, Sanjay Ramdas Bauskar, Kiran Polimetla. Data migration in the cloud database: A review of vendor solutions and challenges . Int J Comput Artif Intell 2022;3(2):96-101. DOI: 10.33545/27076571.2022.v3.i2a.110
Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Exploring AI Algorithms for Cancer Classification and Prediction Using Electronic Health Records. Journal of Artificial Intelligence and Big Data, 1(1), 65–74. Retrieved from https://www.scipublications.com/journal/index.php/jaibd/article/view/1109
Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020).Unveiling the Hidden Patterns: AI-Driven Innovations in Image Processing and Acoustic Signal Detection. (2020). JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING ( JRTCSE), 8(1), 25-45. https://doi.org/10.70589/JRTCSE.2020.1.3.
Rajaram, S. K., Konkimalla, S., Sarisa, M., Gollangi, H. K., Madhavaram, C. R., Reddy, M. S., (2023). AI/ML-Powered Phishing Detection: Building an Impenetrable Email Security System. ISAR Journal of Science and Technology, 1(2), 10-19.
Hemanth Kumar Gollangi, Sanjay Ramdas Bauskar, Chandrakanth Rao Madhavaram, Eswar Prasad Galla, Janardhana Rao Sunkara and Mohit Surender Reddy.(2020). “Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml”, International Journal of Development Research. 10,(08),39735-39743. https://doi.org/10.37118/ijdr.28839.28.2020.
Mohit Surender Reddy, Manikanth Sarisa, Siddharth Konkimalla, Sanjay Ramdas Bauskar, Hemanth Kumar Gollangi, Eswar Prasad Galla, Shravan Kumar Rajaram, 2021. "Predicting tomorrow’s Ailments: How AI/ML Is Transforming Disease Forecasting", ESP Journal of Engineering & Technology Advancements, 1(2): 188-200.
Chandrakanth R. M., Eswar P. G., Mohit S. R., Manikanth S., Venkata N. B., & Siddharth K. (2021). Predicting Diabetes Mellitus in Healthcare: A Comparative Analysis of Machine Learning Algorithms on Big Dataset. In Global Journal of Research in Engineering & Computer Sciences (Vol. 1, Number 1, pp. 1–11). https://doi.org/10.5281/zenodo.14010835
Patra, G. K., Kuraku, C., Konkimalla, S., Boddapati, V. N., Sarisa, M. and Reddy, M. S. (2024) An Analysis and Prediction of Health Insurance Costs Using Machine Learning-Based Regressor Techniques. Journal of Data Analysis and Information Processing, 12, 581-596. doi: 10.4236/jdaip.2024.124031.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.