Emergent Architectures in Edge Computing for Low-Latency Application
Emerging as a necessary paradigm for meeting the low-latency needs of contemporary real-time applications is edge computing. By distributing computation, storage, and network resources, edge designs reduce data transfer latency and increase system responsiveness. They are indispensible in fields including smart cities, autonomous systems, and healthcare. This study explores evolving architectural paradigms in edge computing—including layered hierarchies, microservices, and serverless computing—as well as their interfaces with technologies including 5G, IoT, and artificial intelligence. Extensive studies reveal how they allow scalable, modular, resource-efficient solutions for activities sensitive to latency. Even in this regard, security, interoperability, and resource allocation demand constant innovation notwithstanding their changing power. The work also looks at innovative ideas addressing these issues and highlights possible opportunities such federated learning and quantum computing. The outcomes highlight how crucial emergent edge computing architectures are in enabling ultra-low-latency applications and redefining operational efficiencies in many industries.
H. Zhang, Y. Yang, X. Huang, C. Fang, and P. Zhang, “Ultra-Low Latency Multi-Task Offloading in Mobile Edge Computing,” IEEE Access, vol. 9, pp. 32569–32581, 2021, doi: 10.1109/ACCESS.2021.3061105.
C. Li, Y. Zhang, R. Xie, X. Hao, and T. Huang, “Integrating Edge Computing into Low Earth Orbit Satellite Networks: Architecture and Prototype,” IEEE Access, vol. 9, pp. 39126–39137, 2021, doi: 10.1109/ACCESS.2021.3064397.
M. Kumar, K. Dubey, and R. Pandey, “Evolution of emerging computing paradigm cloud to fog: Applications, limitations and research challenges,” Proc. Conflu. 2021 11th Int. Conf. Cloud Comput. Data Sci. Eng., no. January, pp. 257–261, 2021, doi: 10.1109/Confluence51648.2021.9377050.
M. Rohith, A. Sunil, and Mohana, “Comparative Analysis of Edge Computing and Edge Devices: Key Technology in IoT and Computer Vision Applications,” 2021 6th Int. Conf. Recent Trends Electron. Information, Commun. Technol. RTEICT 2021, no. May, pp. 722–727, 2021, doi: 10.1109/RTEICT52294.2021.9573996.
M. J. P. Peixoto et al., “Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing,” Proc. IEEE, vol. 107, no. 8, pp. 1778–1837, 2021.
J. Hu, C. Chen, L. Cai, M. R. Khosravi, Q. Pei, and S. Wan, “UAV-Assisted Vehicular Edge Computing for the 6G Internet of Vehicles: Architecture, Intelligence, and Challenges,” IEEE Commun. Stand. Mag., vol. 5, no. 2, pp. 12–18, 2021, doi: 10.1109/MCOMSTD.001.2000017.
D. Borsatti, G. Davoli, W. Cerroni, and C. Raffaelli, “Enabling Industrial IoT as a Service with Multi-Access Edge Computing,” IEEE Commun. Mag., vol. 59, no. 8, pp. 21–27, 2021, doi: 10.1109/MCOM.001.2100006.
I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. Ylianttila, “Cloud and Edge Computation Offloading for Latency Limited Services,” IEEE Access, vol. 9, pp. 55764–55776, 2021, doi: 10.1109/ACCESS.2021.3071848.
Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects,” IEEE Commun. Surv. Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021, doi: 10.1109/COMST.2021.3061981.
X. Chen et al., “Achieving low tail-latency and high scalability for serializable transactions in edge computing,” EuroSys 2021 - Proc. 16th Eur. Conf. Comput. Syst., pp. 210–227, 2021, doi: 10.1145/3447786.3456238.
A. A. Diro, H. T. Reda, and N. Chilamkurti, “Differential flow space allocation scheme in SDN based fog computing for IoT applications,” J. Ambient Intell. Humaniz. Comput., vol. 15, no. 2, pp. 1353–1363, 2024, doi: 10.1007/s12652-017-0677-z.
N. Makondo, H. I. Kobo, T. E. Mathonsi, D. Du Plessis, T. M. Makhosa, and L. Mamushiane, “An Efficient Architecture for Latency Optimisation in 5G Using Edge Computing for uRLLC Use Cases,” 7th Int. Conf. Artif. Intell. Big Data, Comput. Data Commun. Syst. icABCD 2024 - Proc., no. August, pp. 1–7, 2024, doi: 10.1109/icABCD62167.2024.10645277.
F. Golpayegani et al., “Adaptation in Edge Computing: A review on design principles and research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 19, no. 3, 2024, doi: 10.1145/3664200.
P. Dazzi et al., “Urgent Edge Computing,” Fram. 2024 - Proc. 2024 Work. Flex. Resour. Appl. Manag. Edge, Part HPDC 2024 - 3rd Int. Symp. High-Performance Parallel Distrib. Comput., pp. 7–14, 2024, doi: 10.1145/3659994.3660315.
S. S. Nair, “Beyond the Cloud -Unraveling the Benefits of Edge Computing in Iot,” Int. J. Comput. Eng. Technol., vol. 14, no. 3, pp. 91–97, 2023.
M. Hartmann, U. S. Hashmi, and A. Imran, “Edge computing in smart health care systems: Review, challenges, and research directions,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 3, 2022, doi: 10.1002/ett.3710.
B. Liang, M. A. Gregory, and S. Li, “Multi-access Edge Computing fundamentals, services, enablers and challenges: A complete survey,” J. Netw. Comput. Appl., vol. 199, no. January, 2022, doi: 10.1016/j.jnca.2021.103308.
Y. Wang and J. Zhao, “A Survey of Mobile Edge Computing for the Metaverse: Architectures, Applications, and Challenges,” Proc. - 2022 IEEE 8th Int. Conf. Collab. Internet Comput. CIC 2022, no. Cic, pp. 1–9, 2022, doi: 10.1109/CIC56439.2022.00011.
M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and T. Wu, “EaaS: A Service-Oriented Edge Computing Framework Towards Distributed Intelligence,” Proc. - 16th IEEE Int. Conf. Serv. Syst. Eng. SOSE 2022, pp. 165–175, 2022, doi: 10.1109/SOSE55356.2022.00026.
L. Bréhon–Grataloup, R. Kacimi, and A. L. Beylot, “Mobile edge computing for V2X architectures and applications: A survey,” Comput. Networks, vol. 206, no. Mcc, 2022, doi: 10.1016/j.comnet.2022.108797.
R. Dave, N. Seliya, and N. Siddiqui, “The Benefits of Edge Computing in Healthcare, Smart Cities, and IoT,” J. Comput. Sci. Appl., vol. 9, no. 1, pp. 23–34, 2021, doi: 10.12691/jcsa-9-1-3.
L. Huang, A. Chandra, and J. Weissman, Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments, vol. 1, no. 1. Association for Computing Machinery, 2021.
M. Ke et al., “An Edge Computing Paradigm for Massive IoT Connectivity over High-Altitude Platform Networks,” IEEE Wirel. Commun., vol. 28, no. 5, pp. 102–109, 2021, doi: 10.1109/MWC.221.2100092.
S. C. Lin, K. C. Chen, and A. Karimoddini, “SDVEC: Software-Defined Vehicular Edge Computing with Ultra-Low Latency,” IEEE Commun. Mag., vol. 59, no. 12, pp. 66–72, 2021, doi: 10.1109/MCOM.004.2001124.
H. Rahimi, Y. Picaud, K. D. Singh, G. Madhusudan, S. Costanzo, and O. Boissier, “Design and Simulation of a Hybrid Architecture for Edge Computing in 5G and beyond,” IEEE Trans. Comput., vol. 70, no. 8, pp. 1213–1224, 2021, doi: 10.1109/TC.2021.3066579.
C. Cicconetti, M. Conti, and A. Passarella, “Architecture and performance evaluation of distributed computation offloading in edge computing,” Simul. Model. Pract. Theory, vol. 101, 2020, doi: 10.1016/j.simpat.2019.102007.
L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular Edge Computing and Networking: A Survey,” Mob. Networks Appl., vol. 26, no. 3, pp. 1145–1168, 2021, doi: 10.1007/s11036-020-01624-1.
L. Yang, X. Chen, S. M. Perlaza, and J. Zhang, “Special Issue on Artificial-Intelligence-Powered Edge Computing for Internet of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9224–9226, 2020, doi: 10.1109/JIOT.2020.3019948.
S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, “SDN enhanced multi-access edge computing (MEC) for E2E mobility and QoS management,” IEEE Access, vol. 8, pp. 77459–77469, 2020, doi: 10.1109/ACCESS.2020.2990292.
G. Caiza, M. Saeteros, W. Oñate, and M. V. Garcia, “Fog computing at industrial level, architecture, latency, energy, and security: A review,” Heliyon, vol. 6, no. 4, p. e03706, 2020, doi: 10.1016/j.heliyon.2020.e03706.
I. Pelle, F. Paolucci, B. Sonkoly, and F. Cugini, “Telemetry-driven optical 5G serverless architecture for latency-sensitive edge computing,” Opt. InfoBase Conf. Pap., vol. Part F174-OFC 2020, no. January, pp. 1–4, 2020, doi: 10.1364/ofc.2020.m1a.1.
S. Das, F. Slyne, A. Kaszubowska, and M. Ruffini, “Virtualized EAST-WEST PON architecture supporting low-latency communication for mobile functional split based on multiaccess edge computing,” J. Opt. Commun. Netw., vol. 12, no. 10, pp. D109–D119, 2020, doi: 10.1364/JOCN.391929.
C. S. M. Babou et al., “Hierarchical Load Balancing and Clustering Technique for Home Edge Computing,” IEEE Access, vol. 8, pp. 127593–127607, 2020, doi: 10.1109/ACCESS.2020.3007944.
F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, “Deep Learning for Edge Computing Applications: A State-of-the-Art Survey,” IEEE Access, vol. 8, pp. 58322–58336, 2020, doi: 10.1109/ACCESS.2020.2982411.
S. Baidya, Y. J. Ku, H. Zhao, J. Zhao, and S. Dey, “Vehicular and edge computing for emerging connected and autonomous vehicle applications,” Proc. - Des. Autom. Conf., vol. 2020-July, 2020, doi: 10.1109/DAC18072.2020.9218618.
F. Vhora and J. Gandhi, “A Comprehensive Survey on Mobile Edge Computing: Challenges, Tools, Applications,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, no. March, pp. 49–55, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-0009.
S. Al Harbi, T. Halabi, and M. Bellaiche, “Fog Computing Security Assessment for Device Authentication in the Internet of Things,” Proc. - 2020 IEEE 22nd Int. Conf. High Perform. Comput. Commun. IEEE 18th Int. Conf. Smart City IEEE 6th Int. Conf. Data Sci. Syst. HPCC-SmartCity-DSS 2020, no. December, pp. 1219–1224, 2020, doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00202
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.