DEVELOPING A WEB BROWSER EXTENSION TO PREVENT THE SPREAD OF FAKE NEWS
Fake news causes huge social problems such as misdirecting and provoking the masses, creating an atmosphere of chaos by spreading fear. Detecting and stopping the dissemination of fake news has been an important and priority issue due to its rapid spread, difficulty to detect, and negative effects. In our study, a new Chrome extension that detects fake news has been developed in order to detect and prevent the spread of fake news. In the study; natural language processing, data mining methods, and various machine learning techniques for instance Passive Aggressive, Random Forest, Support Vector Machine, AdaBoost, XGBoost, and Long-Short-Term Memory (LSTM) algorithms are used. The accuracy rates of the algorithms, confusion matrices, AUC rates, and ROC curves were compared. The created machine learning model has been implemented in the online internet environment by using Flask and Rest API in the Python program. Finally, the Chrome extension interface was built using Javascript, HTML, and CSS. The LSTM algorithm gave the highest prediction result with a rate of 90.72% compared to other algorithms.
Borges, T. L. (2022). “Chrome Extension for Misinformation Detection”. Aian Journal of Convergence in Technology. VOL 8 NO 3 (2022). https://doi.org/10.33130/AJCT.2022v08i03.002
Botnevik, B., Sakariassen, E. ve Setty, V. (2020). “BRENDA: Browser Extension for Fake News Detection”. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/3397271.3401396
Bovet, A. ve Makse, H. A. (2019). “Influence of fake news in Twitter during the 2016 US presidential election”. Nature Communications, 10(1). doi:10.1038/s41467-018-07761-2
Cui, L., Shu, K., Wang, S., Lee, D. ve Liu, H. (2019). “dEFEND". Proceedings of the 28th ACM International Conference on Information and Knowledge Management - CIKM ’19. doi:10.1145/3357384.3357862
Davoudi, M., Moosavi, M. R., Sadreddini, M. H. (2022). “DSS: A hybrid deep model for fake news detection using propagation tree and stance network”. Expert Systems with Applications, Volume 198. https://doi.org/10.1016/j.eswa.2022.116635
Dua, V., Rajpal, A., Rajpal, S. et al. (2023) I-FLASH: Interpretable Fake News Detector Using LIME and SHAP. Wireless Pers Commun 131, 2841–2874. https://doi.org/10.1007/s11277-023-10582-2
Kesarwani, A., Chauhan, S. S. ve Nair, A. R. (2020). “Fake News Detection on Social Media using K-Nearest Neighbor Classifier”. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). doi:10.1109/icacce49060.2020.9154
Klyuev, V. (2018). “Fake News Filtering: Semantic Approaches”. 2018 7th International Conference on Reliability”, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). doi:10.1109/icrito.2018.8748506
Liu, C., Sheng, Y., Wei, Z. ve Yang, Y.-Q. (2018). “Research of Text Classification Based on Improved TF-IDF Algorithm”. 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE). doi:10.1109/irce.2018.8492945
Paka, W. S., Bansal, R., Kaushik, A., Sengupta, S. ve Chakraborty, T. (2021). “Cross-SEAN: A cross-stitch semi-supervised neural attention model for COVID-19 fake news detection”. Applied Soft Computing, 107, 107393. doi: 10.1016/j.asoc.2021.107393
Palani, B., Elango, S. & Viswanathan K, V. CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT. Multimed Tools Appl 81, 5587–5620 (2022). https://doi.org/10.1007/s11042-021-11782-3
Patankar, A., Bose, J. ve Khanna, H. (2019). “A Bias Aware News Recommendation System”. 2019 IEEE 13th International Conference on Semantic Computing (ICSC). doi:10.1109/icosc.2019.8665610
Reis, J. C. S., Correia, A., Murai, F., Veloso, A., Benevenuto, F. ve Cambria, E. (2019). “Supervised Learning for Fake News Detection”. IEEE Intelligent Systems, 34(2), 76–81. doi:10.1109/mis.2019.2899143
Shahbaz, M., Ali, S., Guergachi, A., Niazi, A., & Umer, A. (2019, July). Classification of Alzheimer's Disease using Machine Learning Techniques. In Data (pp. 296-303)
Shu, K., Mahudeswaran, D. ve Liu, H. (2018). “FakeNewsTracker: A tool for fake news collection, detection, and visualization”. Computational and Mathematical Organization Theory. doi:10.1007/s10588-018-09280-3
Tandoc, E. C. (2019). The facts of fake news: A research review. Sociology Compass, e12724. doi:10.1111/soc4
Velasco, A. T., Roi, A. Cortez, C., Camay, J. M. B., Michael, I., Giba, C., Diloy, M. A., "Factit: A Fact-Checking Browser Extension," 2023 IEEE 12th International Conference on Educational and Information Technology (ICEIT), Chongqing, China, 2023, pp. 342-347, doi: 10.1109/ICEIT57125.2023.10107833.
Vo, N. and Lee, K. (2018). “The Rise of Guardians”. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval-SIGIR ’18. doi:10.1145/3209978.3210037
Warman, D., Kabir, M. A. (2023) "COVIDFakeExplainer: An Explainable Machine Learning based Web Application for Detecting COVID-19 Fake News," 2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Nadi, Fiji, 2023, pp. 01-06, doi: 10.1109/CSDE59766.2023.10487649.
Zhang, Q., Guo, Z., Zhu, Y., Vijayakumar, P., Castiglione, A., Gupta, B. B. (2023). “A Deep Learning-based Fast Fake News Detection Model for Cyber-Physical Social Services”. Pattern Recognition Letters, Volume 168, Pages 31-38. https://doi.org/10.1016/j.patrec.2023.02.026.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.