Sentiment analysis in infodemic management: leveraging the eppm Risk communication model
Infodemics are the rapid spread of false or misleading information related to public health emergencies, often through digital platforms. They can cause confusion, fear, and even harm to public health. This study investigates the application of sentiment analysis for infodemic management during disease outbreaks. Leveraging the Extended Parallel Process Model (EPPM) of risk communication, the research aims to categorize rumors based on their perceived threat level (high, medium, or low). Machine learning is employed to analyze infodemic text data collected from two Nigerian states (Oyo and Bauchi) to assess threat appraisal according to the EPPM model. The findings can inform targeted interventions for effective infodemic management before, during, and after outbreak of diseases.
Abbas, H., Tahoun, M.M., Aboushady, A.T., Khalifa, A., Corpuz, A. & Nabeth, P. (2022) Usage of social media in epidemic intelligence activities in the WHO, Regional Office for the Eastern Mediterranean. BMJ Global Health. 7 (Suppl 4), e008759. doi:10.1136/bmjgh-2022-008759.
Ahuja, R., Chug, A., Kohli, S., Gupta, S. & Ahuja, P. (2019) The Impact of Features Extraction on the Sentiment Analysis. Procedia Computer Science. 152, 341–348. doi: 10.1016/j.procs.2019.05.008.
Anwar, A., Malik, M., Raees, V. & Anwar, A. (2020) Role of Mass Media and Public Health Communications in the COVID-19 Pandemic. Cureus. 12 (9), e10453. doi:10.7759/cureus.10453.
Balakrishnan, V., Ng, W.Z., Soo, M.C., Han, G.J. & Lee, C.J. (2022) Infodemic and fake news – A comprehensive overview of its global magnitude during the COVID-19 pandemic in 2021: A scoping review. International Journal of Disaster Risk Reduction. 78, 103144. doi: 10.1016/j.ijdrr.2022.103144.
Beebeejaun, K., Elston, J., Oliver, I., Ihueze, A., Ukenedo, C., Aruna, O., Makava, F., Obiefuna, E., Eteng, W., Niyang, M., Okereke, E., Gobir, B., Ilori, E., Ojo, O. & Ihekweazu, C. (2021) Evaluation of National Event-Based Surveillance, Nigeria, 2016–2018. Emerging Infectious Diseases. 27 (3), 694–702. doi:10.3201/eid2703.200141.
Bursztyn, L., Rao, A., Roth, C. & Yanagizawa-Drott, D. (2021) Misinformation During a Pandemic.
Bursztyn, L. & Yang, D.Y. (n.d.) Misperceptions About Others.
Evgeniou, T. & Pontil, M. (2001) Support Vector Machines: Theory and Applications. In: 20 September 2001 pp. 249–257. doi:10.1007/3-540-44673-7_12.
Garrido-Cardenas, J.A., Cebrián-Carmona, J., González-Cerón, L., Manzano-Agugliaro, F. & Mesa-Valle, C. (2019) Analysis of Global Research on Malaria and Plasmodium vivax. International Journal of Environmental Research and Public Health. 16 (11), 1928. doi:10.3390/ijerph16111928.
González-López, J.R., Serrano-Gómez, D., Velasco-González, V., Alconero-Camarero, A.R., Cuesta-Lozano, D., García-García, E., González-Sanz, P., Herrera-Peco, I., Martínez-Miguel, E., Morán-García, J.M., Recio-Rodríguez, J.I. & Sarabia-Cobo, C. (2022) Design and Validation of a Questionnaire on Risk Perception, Coping Behaviors and Preventive Knowledge against COVID-19 among Nursing Students. Journal of Personalized Medicine. 12 (4), 515. doi:10.3390/jpm12040515.
Goswami, V.G. (2022) Fake News social media: a Data Science Perspective. https://easychair.org/publications/preprint/7ppP.
Isere, E.E., Fatiregun, A.A. & Ajayi, I.O. (2015) An overview of disease surveillance and notification system in Nigeria and the roles of clinicians in disease outbreak prevention and control. Nigerian Medical Journal: Journal of the Nigeria Medical Association. 56 (3), 161–168. doi:10.4103/0300-1652.160347.
Jahangiry, L., Bakhtari, F., Sohrabi, Z., Reihani, P., Samei, S., Ponnet, K. & Montazeri, A. (2020) Risk perception related to COVID-19 among the Iranian general population: an application of the extended parallel process model. BMC Public Health. 20 (1), 1571. doi:10.1186/s12889-020-09681-7.
Luo, J., Xue, R., Hu, J. & El Baz, D. (2021) Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification. Healthcare. 9 (9), 1094. doi:10.3390/healthcare9091094.
Popova, L. (2020) Extended Parallel Process Model. In: The International Encyclopedia of Media Psychology. John Wiley & Sons, Ltd. pp. 1–6. doi:10.1002/9781119011071.iemp0189.
Rocha, Y.M., de Moura, G.A., Desidério, G.A., de Oliveira, C.H., Lourenço, F.D. & de Figueiredo Nicolete, L.D. (2021) The impact of fake news on social media and its influence on health during the COVID-19 pandemic: a systematic review. Zeitschrift Fur Gesundheitswissenschaften. 1–10. doi:10.1007/s10389-021-01658-z.
Saeed, M. (2021) A Gentle Introduction to Sigmoid Function. MachineLearningMastery.com. https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/.
Sharma, K., Seo, S., Meng, C., Rambhatla, S. & Liu, Y. (2020) COVID-19 on Social Media: Analyzing Misinformation in Twitter Conversations. doi:10.48550/arXiv.2003.12309.
Shobowale, O. (2021). A systematic review of the spread of information during pandemics: A case of the 2020 COVID-19 virus. Journal of African Media Studies, 13(2), 221–234. https://doi.org/10.1386/jams_00045_1
Suarez-Lledo, V. & Alvarez-Galvez, J. (2021) Prevalence of Health Misinformation on Social Media: Systematic Review. Journal of Medical Internet Research. 23 (1), e17187. doi:10.2196/17187.
Suleimany, M., Mokhtarzadeh, S. & Sharifi, A. (2022) Community resilience to pandemics: An assessment framework developed based on the review of COVID-19 literature. International Journal of Disaster Risk Reduction. 80, 103248. doi: 10.1016/j.ijdrr.2022.103248.
Williams, A.J., Maguire, K., Morrissey, K., Taylor, T. & Wyatt, K. (2020) Social cohesion, mental wellbeing and health-related quality of life among a cohort of social housing residents in Cornwall: a cross sectional study. BMC Public Health. 20 (1), 985. doi:10.1186/s12889-020-09078-6.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.