A Review on Resource Allocation in IoT Network using Machine Learning
In the fields of data analytics and industrial automation, the Internet of Things (IoT) has become a game-changer. In IoT contexts, there is a growing demand for effective use of resources due to the interconnection of devices and systems. The constantly changing character of IoT systems, where resource availability and demand alter continually, presents one of the main obstacles in resource allocation management. The capacity of machine learning approaches to manage intricate and changing structures has garnered substantial interest in recent times. In the framework of the Industrial Internet of Things, this work gives a detailed comparison of various resource allocation in IoT network using machine learning algorithms.
Y Gong, J Huang, B Liu, J Xu, B Wu Dynamic Resource Allocation for Virtual Machine Migration Optimization using Machine Learning. Sensors, 2024 … - arXiv preprint arXiv …, 2024 - arxiv.org
M. Anoushee, M. Fartash, and J. Akbari Torkestani, “An intelligent resource management method in SDN based fog computing using reinforcement learning,” Computing, vol. 106, no. 4, pp. 1051–1080, 2024, doi: 10.1007/s00607-022-01141-x..
P. Liu, K. An, J. Lei, Y. Sun, W. Liu, and S. Chatzinotas, “Computation Rate Maximization for SCMA-Aided Edge Computing in IoT Networks: A Multi-Agent Reinforcement Learning Approach,” IEEE Trans. Wirel. Commun., p. 1, 2024, doi: 10.1109/TWC.2024.3371791..
C. Wang, “Refined intelligent manufacturing enterprise human management based on IoT and machine learning technology,” Int. J. Adv. Manuf. Technol., 2024, doi: 10.1007/s00170-023-12903-y..
H. Zhang, J. Wang, H. Zhang, and C. Bu, “Security computing resource allocation based on deep reinforcement learning in serverless multi-cloud edge computing,” Futur. Gener. Comput. Syst., vol. 151, pp. 152–161, 2024, doi: https://doi.org/10.1016/j.future.2023.09.016.
Jayalaxmi, P. L. S., Kumar, G., Saha, R., Conti, M., Kim, T. H., & Thomas, R. (2022). DeBot: A deep learning-based model for bot detection in industrial internet-of-things. Computers and Electrical Engineering, 102, 108214.
Yang, Z., Yang, R., Yu, F. R., Li, M., Zhang, Y., & Teng, Y. (2022). Sharded blockchain for collaborative computing in the Internet of Things: Combined of dynamic clustering and deep reinforcement learning approach. IEEE Internet of Things Journal, 9(17), 16494-16509.
Gong, Y., Yao, H., Wang, J., Li, M., & Guo, S. (2022). Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things. IEEE Transactions on Network Science and Engineering.
Olatinwo, S. O., & Joubert, T. H. (2022). Deep learning for resource management in Internet of Things networks: a bibliometric analysis and comprehensive review. Institute of Electrical and Electronics Engineers.
Tian, K., Chai, H., Liu, Y., & Liu, B. (2022). Edge intelligence empowered dynamic offloading and resource management of MEC for smart city Internet of Things. Electronics, 11(6), 879.
Liu, X., Sun, C., Yu, W., & Zhou, M. (2021). Reinforcement-Learning-based dynamic spectrum access for software-defined cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 18(6), 4244-4253.
Lin, P., Song, Q., Wang, D., Yu, F. R., Guo, L., & Leung, V. C. (2021). Resource management for pervasive-edge-computing-assisted wireless VR streaming in industrial Internet of Things. IEEE Transactions on Industrial Informatics, 17(11), 7607-7617.
Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021). Artificial intelligence-based decision-making algorithms, internet of things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics, 10(20), 2497.
Guo, Y., Zhao, Z., He, K., Lai, S., Xia, J., & Fan, L. (2021). Efficient and flexible management for industrial internet of things: A federated learning approach. Computer Networks, 192, 108122.
Khumalo, N. N., Oyerinde, O. O., & Mfupe, L. (2021). Reinforcement learning-based resource management model for fog radio access network architectures in 5G. IEEE Access, 9, 12706-12716.
Khalil, R. A., Saeed, N., Masood, M., Fard, Y. M., Alouini, M. S., & Al-Naffouri, T. Y. (2021). Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet of Things Journal, 8(14), 11016-11040.
Wu, J., Zhang, G., Nie, J., Peng, Y., & Zhang, Y. (2021). Deep reinforcement learning for scheduling in an edge computing-based industrial internet of things. Wireless Communications and Mobile Computing, 2021, 1-12.
Zhou, H., She, C., Deng, Y., Dohler, M., & Nallanathan, A. (2021). Machine learning for massive industrial internet of things. IEEE Wireless Communications, 28(4), 81-87.
Chen, Y., Liu, Z., Zhang, Y., Wu, Y., Chen, X., & Zhao, L. (2020). Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Transactions on Industrial Informatics, 17(7), 4925-4934.
Shi, Z., Xie, X., Lu, H., Yang, H., Kadoch, M., & Cheriet, M. (2020). Deep-reinforcement-learning-based spectrum resource management for industrial Internet of Things. IEEE Internet of Things Journal, 8(5), 3476-3489.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.