Predictive Analysis in Healthcare
This research paper explores the transformative role of predictive analysis in healthcare, with a specific focus on predicting and managing Parkinson's disease as a case study. By integrating advanced analytics and machine learning techniques, we delve into the intricate landscape of healthcare data to forecast patient outcomes, optimize resource allocation, and enhance overall healthcare decision-making. Through an exhaustive examination of literature and scientific inquiry, we illuminate the promising applications of predictive analysis in addressing the chronic and complex nature of neurodegenerative diseases like Parkinson's. The paper also discusses the challenges, ethical considerations, and future directions within the realm of predictive analysis in healthcare, offering a comprehensive perspective on its potential to revolutionize patient care and public health outcomes.
Cho, S., Sohn, C. H., Jo, M. W., Shin, S. Y., & Lee, J. H. (2013). Correlation between national influenza surveillance data and google trends in South Korea. PloS One, 8(12), e81422.
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18.
Levin, S., Jain, S., & Kruglov, D. (2016). Predictive analytics in healthcare: A roadmap for the health sector. McKinsey & Company.
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014.
Fong, S., Nguyen, H. V., Lee, C., Deivasigamani, R., Goh, J., Yee, W., & Soewito, B. (2018). Deep learning for dengue outbreak prediction. Computers in Biology and Medicine, 104, 24-31.
Kansagara, D., Englander, H., Salanitro, A., Kagen, D., Theobald, C., Freeman, M., ... & An, M. (2011). Risk prediction models for hospital readmission: A systematic review. JAMA, 306(15), 1688-1698.
Green, L., Kim, E. H., Lee, S., & Khuri, J. Y. (2018). Predicting emergency department wait times in real-time. Health Care Management Science, 21(3), 347-358.
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
Dhar, V. (2013). Data science and prediction. Communications of the ACM, 56(12), 64-73.
Lippi, G., Henry, B. M., & Sanchis-Gomar, F. (2020). COVID-19: Unravelling the data. International Journal of Environmental Research and Public Health, 17(10), 3648.
Goldberger, Z. D., Rong, J., & Winkler, S. (2018). Developing Electronic Health Record Algorithms That Accurately Identify Patients With Implantable Cardiac Devices in a Large Integrated Healthcare System. Journal of the American Heart Association, 7(17), e008137.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control. John Wiley & Sons.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. John Wiley & Sons.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
World Health Organization (2020). Coronavirus disease (COVID-19) technical guidance: Surveillance and case definitions. Retrieved from [https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON262](https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON262)
Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599-653.
Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., & Mills, M. C. (2020). Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nature Human Behaviour, 4(6), 588-596.
Shaman, J., Karspeck, A., Yang, W., Tamerius, J., & Lipsitch, M. (2013). Real-time influenza forecasts during the 2012-2013 season. Nature Communications, 4(1), 2837.
Raisaro, J. L., Troncoso-Pastoriza, J. R., Misbach, M., Quer, G., Hedenius, M., Elger, B. S., ... & Troncoso, C. (2018). PEPs: Privacy-preserving epidemic prediction in connected populations. PLOS Computational Biology, 14(3), e1005993.
McConnell, J. W., & Data Privacy Group. (2013). Health data privacy: The promise and the peril. Health Affairs, 32(11), 1979-1985.
Car, J., Sheikh, A., Wicks, P., Williams, M. S. (2015). Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom. BMC Medicine, 13, 260.
Wang, F., Casalino, L. P., Khullar, D. (2018). Deep Learning in Medicine—Promise, Progress, and Challenges. JAMA Internal Medicine, 178(3), 293-294.
Vassy, J. L., Christensen, K. D., Schonman, E. F., Blout, C. L., Robinson, J. O., Krier, J., ... & Rehm, H. L. (2019). The Impact of Whole-Genome Sequencing on the Primary Care and Outcomes of Healthy Adult Patients: A Pilot Randomized Trial. Annals of Internal Medicine, 170(6), 152-159.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.