Approaches to Disaster Recovery in Cloud Databases: A Comparative Analysis of Current Mechanisms
Disaster recovery (DR) is a critical aspect of maintaining the availability, integrity, and continuity of cloud databases, which store and manage vast amounts of mission-critical data. With the increasing reliance on cloud platforms for business operations, organizations must implement effective disaster recovery mechanisms to safeguard against data loss, downtime, and system failures. This paper presents a comparative analysis of current disaster recovery approaches in cloud databases, examining the strengths and weaknesses of various strategies, including backup and restore, data replication, and automated failover systems. We evaluate how these mechanisms are applied in different cloud models (public, private, and hybrid), considering factors such as recovery time objectives (RTO), recovery point objectives (RPO), cost, and scalability. The paper also discusses emerging technologies and trends in cloud DR, such as real-time data synchronization, machine learning-based predictive recovery, and multi-cloud disaster recovery solutions. Additionally, the role of cloud service providers’ Service Level Agreements (SLAs) in defining DR expectations is analyzed. By comparing the advantages and limitations of these mechanisms, this paper provides insights into how organizations can select the most appropriate DR strategy based on their specific business needs and risk tolerance. The study concludes by offering recommendations for optimizing disaster recovery plans in cloud environments to ensure business continuity and data protection in the face of unexpected disruptions.
Syed, S. (2022). Towards Autonomous Analytics: The Evolution of Self-Service BI Platforms with Machine Learning Integration. In Journal of Artificial Intelligence and Big Data (Vol. 2, Issue 1, pp. 84–96). Science Publications (SCIPUB).https://doi.org/10.31586/jaibd.2022.1157
Danda, R. R. (2022). Innovations in Agricultural Machinery: Assessing the Impact of Advanced Technologies on Farm Efficiency. In Journal of Artificial Intelligence and Big Data (Vol. 2, Issue 1, pp. 64–83). Science Publications (SCIPUB). https://doi.org/10.31586/jaibd.2022.1156
Nampalli, R. C. R. (2022). Neural Networks for Enhancing Rail Safety and Security: Real-Time Monitoring and Incident Prediction. In Journal of Artificial Intelligence and Big Data (Vol. 2, Issue 1, pp. 49–63). Science Publications (SCIPUB). https://doi.org/10.31586/jaibd.2022.1155
Bansal, A. Advanced Approaches to Estimating and Utilizing Customer Lifetime Value in Business Strategy.
Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenancefor Vehicles: Case Studies. International Journal of Engineering and Computer Science, 11(11), 25628–25640.https://doi.org/10.18535/ijecs/v11i11.4707
Korada, L., & Somepalli, S. (2022). Leveraging 5G Technology and Drones for Proactive Maintenance in the Power Transmission Industry: Enhancing Safety, Continuity, and Cost Savings. In Journal of Engineering and Applied Sciences Technology (pp. 1–5). Scientific Research and Community Ltd. https://doi.org/10.47363/jeast/2022(4)260
Mandala, V., & Surabhi, S. N. R. D. (2020). Integration of AI-Driven Predictive Analytics into Connected Car Platforms. IARJSET, 7 (12).
Kommisetty, P. D. N. K. (2022). Leading the Future: Big Data Solutions, Cloud Migration, and AI-Driven Decision-Making in Modern Enterprises. Educational Administration: Theory and Practice, 28(03), 352-364.
Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
Perumal, A. P., Deshmukh, H., Chintale, P., Desaboyina, G., & Najana, M. Implementing zero trust architecture in financial services cloud environments in Microsoft azure security framework.
Avacharmal, R. (2022). ADVANCES IN UNSUPERVISED LEARNING TECHNIQUES FOR ANOMALY DETECTION AND FRAUD IDENTIFICATION IN FINANCIAL TRANSACTIONS. NeuroQuantology, 20(5), 5570.
Syed, S. (2021). Financial Implications of Predictive Analytics in Vehicle Manufacturing: Insights for Budget Optimization and Resource Allocation. Journal of Artificial Intelligence and Big Data, 1(1), 111–125. Retrieved from https://www.scipublications.com/journal/index.php/jaibd/article/view/1154
Danda, R. R. (2021). Sustainability in Construction: Exploring the Development of Eco-Friendly Equipment. In Journal of Artificial Intelligence and Big Data (Vol. 1, Issue 1, pp. 100–110). Science Publications (SCIPUB). https://doi.org/10.31586/jaibd.2021.1153
Nampalli, R. C. R. (2022). Machine Learning Applications in Fleet Electrification: Optimizing Vehicle Maintenance and Energy Consumption. In Educational Administration: Theory and Practice. Green Publication. https://doi.org/10.53555/kuey.v28i4.8258
Bansal, A. (2022). Establishing a Framework for a Successful Center of Excellence in Advanced Analytics. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 2(3), 76-84.
Korada, L. (2022). Low Code/No Code Application Development - Opportunity and Challenges for Enterprises. In International Journal on Recent and Innovation Trends in Computing and Communication (Vol. 10, Issue 11, pp. 209–218). Auricle Technologies, Pvt., Ltd. https://doi.org/10.17762/ijritcc.v10i11.11038
Mandala, V. (2018). From Reactive to Proactive: Employing AI and ML in Automotive Brakes and Parking Systems to Enhance Road Safety. International Journal of Science and Research (IJSR), 7(11), 1992-1996.
Vehicle Control Systems: Integrating Edge AI and ML for Enhanced Safety and Performance. (2022).International Journal of Scientific Research and Management (IJSRM), 10(04), 871-886.https://doi.org/10.18535/ijsrm/v10i4.ec10
Perumal, A. P., & Chintale, P. Improving operational efficiency and productivity through the fusion of DevOps and SRE practices in multi-cloud operations.
Avacharmal, R., & Pamulaparthyvenkata, S. (2022). Enhancing Algorithmic Efficacy: A Comprehensive Exploration of Machine Learning Model Lifecycle Management from Inception to Operationalization. Distributed Learning and Broad Applications in Scientific Research, 8, 29-45.
Syed, S. (2019). Roadmap for Enterprise Information Management: Strategies and Approaches in 2019. International Journal of Engineering and Computer Science, 8(12), 24907–24917. https://doi.org/10.18535/ijecs/v8i12.4415
Danda, R. R. (2020). Predictive Modeling with AI and ML for Small Business Health Plans: Improving Employee Health Outcomes and Reducing Costs. In International Journal of Engineering and Computer Science (Vol. 9, Issue 12, pp. 25275–25288). Valley International. https://doi.org/10.18535/ijecs/v9i12.4572
Rama Chandra Rao Nampalli. (2022). Deep Learning-Based Predictive Models For Rail Signaling And Control Systems: Improving Operational Efficiency And Safety. Migration Letters, 19(6), 1065–1077. Retrieved from https://migrationletters.com/index.php/ml/article/view/11335
Bansal, A. (2022). REVOLUTIONIZING REVENUE: THE POWER OF AUTOMATED PROMO ENGINES. INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING AND TECHNOLOGY (IJECET), 13(3), 30-37.
Laxminarayana Korada, Vijay Kartik Sikha, & Satyaveda Somepalli. (2022). Importance of Cloud Governance Framework for Robust Digital Transformation and IT Management at Scale. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.13348757
Chintale, P. (2020). Designing a secure self-onboarding system for internet customers using Google cloud SaaS framework. IJAR, 6(5), 482-487.
Avacharmal, R. (2021). Leveraging Supervised Machine Learning Algorithms for Enhanced Anomaly Detection in Anti-Money Laundering (AML) Transaction Monitoring Systems: A Comparative Analysis of Performance and Explainability. African Journal of Artificial Intelligence and Sustainable Development, 1(2), 68-85.
Nampalli, R. C. R. (2021). Leveraging AI in Urban Traffic Management: Addressing Congestion and Traffic Flow with Intelligent Systems. In Journal of Artificial Intelligence and Big Data (Vol. 1, Issue 1, pp. 86–99). Science Publications (SCIPUB). https://doi.org/10.31586/jaibd.2021.1151
Bansal, A. (2021). OPTIMIZING WITHDRAWAL RISK ASSESSMENT FOR GUARANTEED MINIMUM WITHDRAWAL BENEFITS IN INSURANCE USING ARTIFICIAL INTELLIGENCE TECHNIQUES. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND MANAGEMENT INFORMATION SYSTEMS (IJITMIS), 12(1), 97-107.
Laxminarayana Korada. (2022). Optimizing Multicloud Data Integration for AI-Powered Healthcare Research. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.13474840
Chintale, P. SCALABLE AND COST-EFFECTIVE SELF-ONBOARDING SOLUTIONS FOR HOME INTERNET USERS UTILIZING GOOGLE CLOUD'S SAAS FRAMEWORK.
Syed, S., & Nampalli, R. C. R. (2021). Empowering Users: The Role Of AI In Enhancing Self-Service BI For Data-Driven Decision Making. In Educational Administration: Theory and Practice. Green Publication. https://doi.org/10.53555/kuey.v27i4.8105
Bansal, A. (2021). INTRODUCTION AND APPLICATION OF CHANGE POINT ANALYSIS IN ANALYTICS SPACE. INTERNATIONAL JOURNAL OF DATA SCIENCE RESEARCH AND DEVELOPMENT (IJDSRD), 1(2), 9-16.
Korada, L. (2021). Unlocking Urban Futures: The Role Of Big Data Analytics And AI In Urban Planning–A Systematic Literature Review And Bibliometric Insight. Migration Letters, 18(6), 775-795.
Chintale, P., Korada, L., WA, L., Mahida, A., Ranjan, P., & Desaboyina, G. RISK MANAGEMENT STRATEGIES FOR CLOUD-NATIVE FINTECH APPLICATIONS DURING THE PANDEMIC.
Syed, S., & Nampalli, R. C. R. (2020). Data Lineage Strategies – A Modernized View. In Educational Administration: Theory and Practice. Green Publication. https://doi.org/10.53555/kuey.v26i4.8104
Bansal, A. (2020). An effective system for Sentiment Analysis and classification of Twitter Data based on Artificial Intelligence (AI) Techniques. International Journal of Computer Science and Information Technology Research, 1(1), 32-47.
Chintale, P., Korada, L., Ranjan, P., & Malviya, R. K. ADOPTING INFRASTRUCTURE AS CODE (IAC) FOR EFFICIENT FINANCIAL CLOUD MANAGEMENT.
Copyright (c) 2024 International Journal of Engineering and Computer Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.