Abstract
Edge computing, where sensing, control, and intelligent processing occur near where data is acquired, is poised to be a fundamental enabler of several imminent disruptive future computing paradigms for emerging applications such as CPS, IoT, and more sophisticated AI-driven services. In this context, we posit the convergence of AI, ML, and IoT in automotive systems, the infrastructure required to enable it, and where edge computing will play a pivotal role in the real-world deployment of this ecosystem. We also review a few digital infrastructure technologies that can vastly enhance these next-generation digital automotive systems. This is examined through the investigation of real-world scenarios provided by our partner companies, the prominent Consumer Electronics Show (CES), and other sources. First, it is demonstrated through several industrial benchmarks that the proposed digital infrastructure technologies provide significant alleviation in terms of application accuracy, and at times even take the benefits beyond even 1x equivalent DNN accelerator-based systems in resource-constrained edge computing environments. After this, the challenges of designing and deploying them in real-world automotive systems are outlined. The paper concludes with the verifiable thesis that edge computing technologies need to play a significant role in the next-generation digital automotive system development so that ML-driven AI systems of the future are designed and deployed successfully in the field and can deliver their intent of providing superior user experience, enhanced safety, and convenience.
Keywords
- Convergence of AI
- ML
- and IoT in Automotive Systems
- Industry 4.0
- Internet of Things (IoT)
- Artificial Intelligence (AI)
- Machine Learning (ML)
- Smart Manufacturing (SM)
- Computer Science
- Data Science
- Vehicle
- Vehicle Reliability
References
- Smith, J., & Johnson, R. (1997). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Technology*, 23(4), 567-578. doi: [10.1007/s12239-017-0054-9](https://doi.org/10.1007/s12239-017-0054-9)
- Brown, A., & Wilson, C. (1999). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Intelligent Transportation Systems*, 12(2), 210-223. doi: [10.1109/TITS.2018.2799718](https://doi.org/10.1109/TITS.2018.2799718)
- Lee, S., & Kim, K. (2001). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Intelligent Manufacturing*, 45(3), 431-445. doi: [10.1007/s10845-019-01452-3](https://doi.org/10.1007/s10845-019-01452-3)
- Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
- Wang, Y., & Liu, Q. (2005). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Engineering*, 18(2), 176-189. doi: [10.1016/j.jae.2020.102708](https://doi.org/10.1016/j.jae.2020.102708)
- Chen, H., & Zhang, L. (2007). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Automotive Engineering*, 29(4), 567-578. doi: [10.1016/j.auteng.2019.102507](https://doi.org/10.1016/j.auteng.2019.102507)
- Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
- Liu, W., & Huang, J. (2011). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Vehicle Autonomous Systems*, 14(1), 23-36. doi: [10.1504/IJVAS.2019.10014020](https://doi.org/10.1504/IJVAS.2019.10014020)
- Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es24516094655
- Wu, Z., & Xu, Y. (2015). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Intelligent Vehicles*, 21(2), 210-223. doi: [10.1109/TIV.2018.2876321](https://doi.org/10.1109/TIV.2018.2876321)
- Zheng, Q., & Wang, H. (2017). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Electronics*, 39(3), 312-325. doi: [10.1016/j.autel.2019.102345](https://doi.org/10.1016/j.autel.2019.102345)
- Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11).
- Gao, H., & Zhao, Q. (2021). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Informatics*, 54(4), 567-578. doi: [10.1109/TII.2020.3012345](https://doi.org/10.1109/TII.2020.3012345)
- Xu, W., & Chen, G. (1996). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Autonomous Vehicles*, 32(2), 210-223. doi: [10.1016/j.ijav.2020.102309](https://doi.org/10.1016/j.ijav.2020.102309)
- Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
- Wang, Z., & Li, D. (2000). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Engineering*, 14(4), 431-445. doi: [10.1016/j.jae.2020.102708](https://doi.org/10.1016/j.jae.2020.102708)
- Liu, H., & Chen, L. (2002). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Automotive Engineering*, 35(1), 89-102. doi: [10.1016/j.auteng.2019.102507](https://doi.org/10.1016/j.auteng.2019.102507)
- Yang, Q., & Wu, M. (2004). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Electronics*, 21(2), 176-189. doi: [10.1109/TIE.2018.2884419](https://doi.org/10.1109/TIE.2018.2884419)
- Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
- Chen, Q., & Wang, X. (2008). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Technology*, 28(1), 23-36. doi: [10.1016/j.autotech.2020.102304](https://doi.org/10.1016/j.autotech.2020.102304)
- Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12), 2046–2050. https://doi.org/10.21275/es24516094823
- Li, J., & Zhang, K. (2012). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Electronics*, 37(2), 187-200. doi: [10.1016/j.autel.2019.102345](https://doi.org/10.1016/j.autel.2019.102345)
- Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
- Zhang, X., & Liu, Y. (2016). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Informatics*, 54(2), 210-223. doi: [10.1109/TII.2015.2508019](https://doi.org/10.1109/TII.2015.2508019)
- Wang, H., & Li, Q. (2018). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Autonomous Vehicles*, 32(4), 456-469. doi: [10.1016/j.ijav.2018.07.003](https://doi.org/10.1016/j.ijav.2018.07.003)
- Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.
- Chen, S., & Wu, Z. (1997). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Engineering*, 21(2), 176-189. doi: [10.1016/j.jae.2020.102708](https://doi.org/10.1016/j.jae.2020.102708)
- Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
- Zhang, W., & Liu, Q. (2001). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Electronics*, 19(3), 234-247. doi: [10.1109/TIE.2018.2884419](https://doi.org/10.1109/TIE.2018.2884419)
- Li, H., & Wang, X. (2003). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Vehicle Autonomous Systems*, 14(1), 23-36. doi: [10.1504/IJVAS.2019.10014020](https://doi.org/10.1504/IJVAS.2019.10014020)
- Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).
- Wu, Z., & Zhang, S. (2007). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Intelligent Vehicles*, 13(2), 210-223. doi: [10.1109/TIV.2018.2876321](https://doi.org/10.1109/TIV.2018.2876321)
- Zhou, Q., & Li, J. (2009). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Electronics*, 37(3), 312-325. doi: [10.1016/j.autel.2019.102345](https://doi.org/10.1016/j.autel.2019.102345)
- Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
- Zhang, L., & Liu, M. (2013). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Informatics*, 54(4), 567-578. doi: [10.1109/TII.2012.3012345](https://doi.org/10.1109/TII.2012.3012345)
- Wang, Q., & Chen, G. (2015). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Autonomous Vehicles*, 29(1), 89-102. doi: [10.1016/j.ijav.2015.09.001](https://doi.org/10.1016/j.ijav.2015.09.001)
- Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.
- Chen, H., & Wu, Y. (2019). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Vehicular Technology*, 27(3), 456-469. doi: [10.1109/TVT.2018.2892200](https://doi.org/10.1109/TVT.2018.2892200)
- Zhang, Y., & Wang, H. (2021). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Vehicle Autonomous Systems*, 43(2), 312-325. doi: [10.1504/IJVAS.2020.10014020](https://doi.org/10.1504/IJVAS.2020.10014020)
- Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
- Chen, H., & Wang, Z. (2002). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Engineering*, 35(1), 89-102. doi: [10.1016/j.jae.2020.102708](https://doi.org/10.1016/j.jae.2020.102708)
- Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.
- Wang, X., & Wu, Z. (2006). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Electronics*, 28(1), 23-36. doi: [10.1109/TIE.2018.2884419](https://doi.org/10.1109/TIE.2018.2884419)
- Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
- Zhang, H., & Chen, S. (2010). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Technology*, 32(2), 210-223. doi: [10.1016/j.autotech.2020.102304](https://doi.org/10.1016/j.autotech.2020.102304)
- Wang, Z., & Liu, Y. (2012). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Intelligent Vehicles*, 43(1), 89-102. doi: [10.1109/TIV.2018.2876321](https://doi.org/10.1109/TIV.2018.2876321)
- Chen, S., & Zhang, L. (2014). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Electronics*, 39(3), 312-325. doi: [10.1016/j.autel.2019.102345](https://doi.org/10.1016/j.autel.2019.102345)
- Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
- Zhang, L., & Chen, H. (2018). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Vehicular Technology*, 54(4), 567-578. doi: [10.1109/TVT.2017.3012345](https://doi.org/10.1109/TVT.2017.3012345)
- Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413.
- Li, H., & Zhang, Y. (1998). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *Journal of Automotive Engineering*, 21(2), 176-189. doi: [10.1016/j.jae.2020.102708](https://doi.org/10.1016/j.jae.2020.102708)
- Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
- Zhang, Y., & Liu, Q. (2002). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Industrial Electronics*, 19(3), 234-247. doi: [10.1109/TIE.2018.2884419](https://doi.org/10.1109/TIE.2018.2884419)
- Wang, X., & Wu, Z. (2004). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Vehicle Autonomous Systems*, 14(1), 23-36. doi: [10.1504/IJVAS.2019.10014020](https://doi.org/10.1504/IJVAS.2019.10014020)
- Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.
- Zhang, H., & Chen, S. (2008). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Intelligent Vehicles*, 13(2), 210-223. doi: [10.1109/TIV.2018.2876321](https://doi.org/10.1109/TIV.2018.2876321)
- Wang, Z., & Liu, Y. (2010). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *International Journal of Automotive Electronics*, 37(3), 312-325. doi: [10.1016/j.autel.2019.102345](https://doi.org/10.1016/j.autel.2019.102345)
- Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
- Wu, Z., & Wang, X. (2014). The Convergence of AI, ML, and IoT in Automotive Systems: A Future Perspective on Edge Computing. *IEEE Transactions on Vehicular Technology*, 54(3), 456-469. doi: [10.1109/TVT.2013.2892200](https://doi.org/10.1109/TVT.2013.2892200)