

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 03 Issue 07 July, 2014 Page No. 7070-7073

Naveen Malhotra
1
 IJECS Volume 3 Issue 7 July,2014 Page No.7070-7073 Page 7070

Implementation of Database Synchronization

Technique between Client and Server

Naveen Malhotra
1
, Anjali Chaudhary

2

1,2

Department Of Computer Science

Kurukshetra Institute Of Technology & Management Pehowa Road Kurukshetra,India

naveenmalhotra1367@gmail.com

anjali.cse@kitme.in

Abstract--The objective of this paper is to provide an algorithm to solve the problem that when all clients are relying on a single

server. If that database becomes unavailable due to planned server downtime or from server failures, all of the remote workers

will be disconnected from their data. Data is stored on their system (user system). When the user connected to the internet data

automatically sink from their client system to the server in serial order. It also works on file handling. When the system is

disconnected from network all the files(images) uploaded by user,saved on client machine folder when it is again connected with

the server,automatically files(images) transferred from client to server.

Keywords—Web application, Web services, Data

Synchronization, Offline mode, online mode.

I. INTRODUCTION

In computer science [1], synchronization refers to one of

two distinct but related concepts: synchronization of

processes, and synchronization of data. Process

synchronization refers to the idea that multiple processes are

to join up or handshake at a certain point, in order to reach

an agreement or commit to a certain sequence of action.

Data synchronization refers to the idea of keeping multiple

copies of a dataset in coherence with one another, or to

maintain data integrity. Process synchronization primitives

are commonly used to implement data synchronization.

Thread or process synchronization

Thread synchronization or serialization, strictly defined, is

the application of particular mechanisms to ensure that two

concurrently-executing threads or processes do not execute

specific portions of a program at the same time. If one

thread has begun to execute a serialized portion of the

program, any other thread trying to execute this portion

must wait until the first thread finishes. Synchronization is

used to control access to state both in small-scale

multiprocessing systems, in multithreaded environments,

multiprocessor computers and in distributed computers

consisting of thousands of units, in banking and database

systems, in web servers, and so on.

 Data synchronization

A distinctly different (but related) concept is that of data

synchronization. This refers to the need to keep multiple

copies of a set of data coherent with one another. Data

synchronization is the process of establishing consistency

among data from a source to target data storage and vice

versa, and the continuous harmonization of the data over

time.

Data synchronization technologies are designed to

synchronize a single set of data between two or more

devices, automatically copying changes back and forth. For

example, a user's contact list on one mobile device can be

synchronized with other mobile devices or computers. Data

synchronization can be local synchronization where the

device and computer are side-by-side and data are

transferred or remote synchronization when a user is mobile

and the data is synchronized over a mobile network.

mailto:naveenmalhotra1367@gmail.com

Naveen Malhotra
1
 IJECS Volume 3 Issue 7 July,2014 Page No.7070-7073 Page 7071

Fig. 1 Sync Framework Database Synchronization

As seen in Fig.1, a remote database is free to exchange

information with any other database. This type of solution is

useful when a team of people is working in remote locations

and do not have access to a central database. These workers

often need to share information amongst each other, but

since they do not have connectivity to the central database

they need to share information through some sort of peer-to-

peer network.

Data synchronization is enabled through specialized

software that tracks data versions as they are created and

utilized. The process is implemented in distributed systems

where data elements are routed between several computers

or systems. Each computer may modify original data

versions, depending on requirements.

Data synchronization ensures that regardless of data

modifications, all changes are merged with the original data

source. Data synchronization is also used in data mirroring,

where each data set is exactly replicated or synchronized

within another device.

Examples include:

• File synchronization, such as syncing a handheld

MP3 player to a desktop computer.

• Cluster file systems, which are file systems that

maintain data or indexes in a coherent fashion

across a whole computing cluster.

• Cache coherency, maintaining multiple copies of

data in sync, across multiple caches.

• RAID (redundant array of independent disks),

where data is written in a redundant fashion across

multiple disks, so that the loss of any one disk does

not lead to a loss of data.

• Database replication, where copies of data in a

database are kept in sync, despite possible large

geographical separation.

• Journaling, a technique used by many modern file

systems to make sure that file metadata are updated

on a disk in a coherent, consistent manner.

Data Synchronization Techniques

The increasing decentralization of information raises the

need to synchronize data across numerous devices and data

storage locations. Synchronization processes comprise a

„source‟ and „destination‟ entity and, based on data

appearance, is categorized into unidirectional and

bidirectional synchronization.

Unidirectional synchronization

Unidirectional synchronization [2] replaces all content of the

destination entity with data from the source entity.

1. Back-up synchronization methods create

replica/mirror files:

• New and updated files are copied from source to

destination entity.

• New files added to the source entity are copied to

the destination entity.

• Deleted files in the source are also deleted from the

destination entity.

2. If older versions of files in the destination entity

need to be kept, an archiving feature can be enabled

which includes that deleted files in the source

entity are not deleted from the destination entity.

3. Consolidation does not keep track of file conflicts

or deletions:

• New files added to the source are copied to the

destination and new files added to destination are

copied to the source.

• Deleted files in the source are copied back from

destination entities and vice versa.

• Updated files in the source copy over older files in

the destination and vice versa.

Bidirectional synchronization

Bidirectional synchronization means two-way file

synchronization merging data from source and destination

entity:

1. New and updated files are copied both ways.

2. New files added to the source entity are copied to

the destination and vice versa.

3. Deleted files in the source are deleted from

destination entities and vice versa.

4. Updated files in the source are copied over older

files in the destination entity and vice versa.

5. If a file changes in both entities, the file is in

conflict and needs to be reconciled manually.

For fast synchronization, files are transparently stored in a

cache. Changes in the cache get automatically invalidated or

updated when used with a sparse cache and entries get

inserted when used with a complete cache.

II RELATED WORK DONE

1) Data Synchronization Using Cloud Storage (2012)

In this paper [3] authors (Sudha S,Brindha K,Sai Vamsy

Krishna S, Gokul K and Sanath Kumar M) had explained

that Cloud computing usually consists of front-end user

devices and back-end cloud servers. This gives users to

access a large volume of storage on the cloud. In this paper,

the user can upload files from mobile or PC to the cloud

storage. These files will be automatically synchronized to

the user's devices when they are connected to the internet.

So, user files can be viewed from anywhere, from any

device. In the existing system, we need to download files

manually. This paradigm provides the user to synchronize

data automatically between devices. They had implemented

this paradigm for windows platform.

Naveen Malhotra
1
 IJECS Volume 3 Issue 7 July,2014 Page No.7070-7073 Page 7072

2) Solving Problems in Software Applications through Data

Synchronization in Case of Absence of the Network (2012)

In this paper [4] authors(Isak Shabani, Betim Çiço and Agni

Dika) had presented an algorithm for data synchronization

based on Web Services (WS), which allows software

applications to work well on both configurations "Online"

and “Offline”, in the absence of the network. For this

purpose is in use Electronic Student Management System

(ESMS) at the University of Prishtina (UP) with the

appropriate module. Since the use of ESMS, because of a

uncertain supply of electricity, disconnecting the network

and for other reasons which are not under the control of

professional staff that manages the performance of this

system, has interruption to the online work. In order to

continue working in such conditions, are founded adequate

solutions to work in offline mode and later data

synchronization in normal conditions.

3) Data Synchronization for Cognitive Load Estimation in

Driving Simulator-based Experiments(2012)

In this paper [5] authors(Zeljko Medenica and Andrew L.

Kun) explained that analyzing the effects of driver

distraction and inattention on cognitive load has become a

very important issue given the substantial increase in the

number of electronic devices which are finding their way

into vehicles. Typically the separate equipment is used for

collecting different variables sensitive to cognitive load

changes. In order to be able to draw reliable conclusions it is

important to possess dependable ways of synchronizing data

collections between different equipment. This paper offers

one low-cost solution which enables synchronizing three

types of devices often used in driving research: driving

simulator, eye tracker and physiological monitor.

4) A Distributed Architecture for Transactions

Synchronization in Distributed Database Systems (2010)

In this paper [6] authors (Arun Kumar Yadav and Dr. Ajay

Agarwal) explained that various concurrency control

algorithms have been proposed for use in distributed

database systems. But, the number of algorithms available

for the distributed concurrency control, come into one of

three basic classes: locking algorithms, Timestamp

algorithms and optimistic (or certification) algorithms. In

this paper, we are presenting a Distributed Transaction

Processing Model and an approach for concurrency control

in distributed database systems. The analysis of our

approach is a decomposition of the concurrency control

problem into two major sub-problems: read-write and write-

write synchronization. We describe a series of

synchronization techniques for solving each sub-problem

and will show how to combine these techniques into

algorithms for solving the entire concurrency control

problem. Such algorithms are called "concurrency control

methods". Our approach concentrates on the structure and

correctness of concurrency control methods and also the

performance of such methods up to some extent.

5) The Impact of Data Synchronization Adoption on

Organizations (2009)

In this paper [7] authors (Susan G. Zucker and Shouhong

Wang,) had explained that Data synchronization is required

for supply chain management in the B2B e-commerce

environment. This case study examined the impact of the

adoption of data synchronization on three large consumer

product goods organizations. The study identified process

and structural inadequacies that developed as the result of

the implementation, as well as how these organizations

recognized benefits and future opportunities after data

synchronization adoption. The findings revealed the

significance of internal alignment around data cleansing and

accuracy, as well as opportunities for improved external

alignment from a systems perspective. The synergy created

between product item management, data synchronization,

and internal champions existed at all three companies. The

workflow re-design, process improvements and standards

development imposed on these organizations by the clean

data requirement of data synchronization provided the

greatest benefits from the data synchronization process.

6) Synchronization in an Embedded DBMS Environment

(2006)

In this paper [8] author (Sang-Wook, Kim) had explained

that the embedded DBMS is a lightweight DBMS for

effective management of quite small databases contained in

tiny mobile devices. Synchronization is a core function of

the embedded DBMS to preserve the consistency of data

replicated in the server and client databases. This paper

presents a framework for synchronization in embedded

DBMS environment. His first address key issues for

realizing synchronization, and then propose solutions to

them obtained from our development. The main issues

touched here are (1) classifying conflicts, (2) identifying

changes in a client database, (3) detecting conflicts, and (4)

resolving conflicts. The proposed framework would help

reduce the trial-and errors of embedded DBMS developers

in implementing their synchronization server.

III MODEL PRESENTATION

Fig. 2 Flow chart of data synchronization

Naveen Malhotra
1
 IJECS Volume 3 Issue 7 July,2014 Page No.7070-7073 Page 7073

As shown in Fig. 2 the steps for data synchronization

algorithm are given below:-

Step 1. Enter the data in the form and upload the image to

save in the database.

Step 2. Check the network connection either available or

not.

Step 3. If a network connection is not available, we switch

on the offline mode. Then data stored on client database and

image stored in the folder on the client machine and again, it

will continuously check whether the network connection is

available or not.

Step 4. If a network connection is available, we switch on

the online mode and it will perform the following

operations:

Check whether any entry exists on the client database

1. If no entry exists on the client database, then data with

images stored on the server.

2. If any entry exists on the client database, then retrieve

the minimum ID & its corresponding column with the

image until the database is empty.

Transfer the data with an image of that ID on the server and

delete it from the client database and delete images from

client machine.

Then data with images stored on the server.

IV CONCLUSION AND FUTURE SCOPE

The objective of the research is to provide an algorithm to

solve the problem that when all clients are reliant on a single

server. If that database becomes unavailable due to planned

server downtime or from server failures, all of the remote

workers will be disconnected from their data. Data is stored

on their system (user system). When the user connected to

the internet data automatically sink from their client system

to the server in serial order.

In the future, application developers should work with serial

of data sink should be in order between offline and online

application. In our research when two different images from

two different clients uploaded on a server then the first

image replaced with another. In the future, researcher solved

the problem of data synchronization with image uploading

ACKNOWLEDGEMENT

I would like to thank my parents and my friends for their

support and trust.

REFERENCES

[1]en.wikipedia.org/wiki/Synchronization_(computer_scien

ce)

[2] Zach McCormick and Douglas C. Schmidt, Data

Synchronization Patterns in Mobile Application Design,

proceedings of the Pattern Languages of Programs (PLoP)

2012 conference, October 19-21, Tucson, Arizona.

[3] Sudha S and Brindha K “Data Synchronization Using

Cloud Storage” International Journal of Advanced Research

in Computer Science and Software Engineering, Volume 2,

Issue 11, November 2012.

[4] Isak Shabani, Betim Çiço and Agni Dika “Solving

Problems in Software Applications through Data

Synchronization in Case of Absence of the Network” IJCSI

International Journal of Computer Science Issues, Vol. 9,

Issue 1, No 3, January 2012.

[5] Zeljko Medenica, Andrew L. Kun “Data

Synchronization for Cognitive Load Estimation in Driving

Simulator-based Experiments” AutomotiveUI'12, October

17-19, 2012, Portsmouth, NH, USA

[6] Arun Kumar Yadav and Dr. Ajay Agarwal, “A

Distributed Architecture for Transactions, 2010

[7] Susan G. Zucker & Shouhong Wang, “the impact of

Data synchronization adoption on organizations: a Case

study” Journal of Electronic Commerce in Organizations”,

Volume 7, Issue 3.

[8] Sang-Wook Kim, “Synchronization in an Embedded

DBMS Environment” IJCSNS International Journal of

Computer Science and Network Security, VOL.6 No.7A,

July 2006.

[9] Thorsten Sch¨utt, Florian Schintke, Alexander Reinefeld

“Efficient Synchronization of Replicated Data in Distributed

Systems”

[10] Wu Jie-Ming, Yu Li-ping “Research and Design of

Smart Client Data Synchronization Engine” Proceedings of

the 2009 International Workshop on Information Security

and Application (IWISA 2009)Qingdao, China, November

21-22, 2009.

[11] Zhen Fang, Lixin Zhang &John B. Carter “Fast

Synchronization on Shared-Memory Multiprocessors:An

Architectural Approach”.

[12]“http://msdn.microsoft.com/enus/library/bb902827.aspx

”, accessed on March 2, 2014.

[13]“https://developer.appcelerator.com/question/131168/sy

nc-local-andserver SQL-database---ant-tools-out-there-or-

best-practices” accessed on March 2, 2014.

