
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 5 May, 2013 Page No. 1479-1486

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1479

TECHNIQUES OF DEFEATING STEGANOGRAPHY: A STATE OF

ART SURVEY

Vishwajeet Singh
1
, Mohd Aman

2
, Vaibhav Gupta

3,
Mayank Parashar

4

1,2,3 U.G., Dronacharya group of institution, greater Noida, U.P.(INDIA)

Vishwajeet2010@yahoo.com, vaibhavgupta6070@gmail.com

ABSTRACT

Steganography is a useful tool that allows covert transmission of information over an overt communications Channel. Combining

covert channel exploitation with the encryption methods of substitution ciphers and/or one time pad cryptography, Steganography

enables the user to transmit information masked inside of a file in plain view. The hidden data is both difficult to detect and when

combined with known encryption algorithms, equally difficult to decipher.

This paper discusses the functional areas in the field of Steganography, how Steganography works, what Steganography software

is commercially available and what data types are supported, what methods and automated tools are available to aide computer

forensic investigators and information security professionals in detecting the use of Steganography , after detection has

occurred, can the embedded message be reliably extracted, can the embedded data be separated from the carrier revealing the

original file, and finally, propose some methods to defeat the use of Steganography even if it cannot be reliably detected

.

1. INTRODUCTION

Within the field of Computer Forensics, investigators should

be Aware that Steganography can be an effective means that

enables Conceald data to be transferred inside of seemingly

innocuous carrier files . Knowing what software

applications are commonly available and how they work

gives forensic investigators a greater probability of

detecting, recovering, and eventually denying access

to the data that mischievous individuals and programs are

openly concealing. Generally speaking, Steganography

brings science to the art of hiding information. The purpose

of Steganography is to convey a message inside of a conduit

of misrepresentation such that the existence of the message

is both hidden and difficult to recover when discovered. The

word Steganography comes from two roots in the Greek

language, “Stegos” meaning hidden / covered / or roof, and

“Graphia” simply meaning writing.

 Similar in nature to the sleight of hand used in traditional

magic, Steganography uses the illusion of normality to mask

the existence of covert activity. The illusion is manifested

through the use of a myriad of forms including written

documents, photographs, paintings, music, sounds, physical

items, and even the human body. Two parts of the system

are required to accomplish the objective, successful masking

of the message and keeping the key to its location and/or

deciphering a secret. When categorized within one of the

two fundamental security mechanisms of computer science

(cryptographic protocols and maintaining control of the

CPUs instruction pointer), steganography clearly fits within

cryptography. It closely mirrors common cryptographic

protocols in that the embedded information is revealed in

much the same manner as substitution or Bacon cipher

mechanism.

This paper will highlight some historical examples, discuss

the Basic principles of steganography showing how most

instances work, identify software that can be used for this

purpose, and finally provide an overview of current methods

employed to detect and defeat it.

2. HISTORICAL EXAMPLES

mailto:Vishwajeet2010@yahoo.com

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1480

Hiding messages by masking their existence is nothing new.

Classical examples include a Roman general that shaved the

head of a slave tattooing a message on his scalp. When the

slave’s hair grew back, the General dispatched the slave to

deliver the hidden message to its intended recipient.

Ancient Greeks covered tablets with wax and used them to

write on. The tablets were composed of wooden slabs. A

layer of melted wax was poured over the wood and allowed

to harden as it dried. Hidden messages could be carved into

the wood prior to covering the slab. When the melted wax

was poured over the slab, the now conceal message was

later revealed by the recipient when they re-melted the wax

and poured it from the tablet.

 From the 1st century through World War II invisible inks

were often used to conceal hidden messages. At first, the

inks were organic substances that oxidized when heated.

The heat reaction revealed the hidden message. As time

passed, compounds and substances were chosen based on

desirable chemical reactions. When the recipient mixed the

compounds used to write the invisible message with a

reactive agent, the resulting chemical reaction revealed the

hidden data. Today, some commonly used compounds are

visible when placed under an ultraviolet light. In another

form while Paris was under siege in 1870, messages were

sent by carrier pigeon. A Parisian photographer used a

microfilm technique to enable each pigeon to carry a higher

volume of data.

 The miniaturization of information also served to deter

detection and was a precursor to the invention of the

microdot. A microdot is a document or photograph reduced

in size until it is as small as a pencil dot (about the size of

the period at the end of this sentence). Between World War I

and II Germany used microdots for steganographic

messaging purposes and later many countries passed these

microdot messages through insecure postal channels. With

any type of hidden communication, the security of the

message often lies in the secrecy of its existence and/or the

secrecy of how to decode it. Cryptography often uses only a

worst case approach assuming only one of these two

conditions holds.

Given the historical examples above, it should be clear that

if a steganographic system’s key were to be discovered, the

security of the system would be irrevocably broken. Simply

shaving the hair off the head of everyone passing through a

checkpoint, or melting the wax off of any discovered tablets

reveals not only the existence of a hidden message but the

message itself.

3. FUNCTIONAL OVERVIEW

Focusing the discussion on steganographic techniques used

in digital media, traditional methods are employed to modify

the data that defines the carrier or cover file. Modifications

are made to achieve a desired pattern. The pattern used to

modify the carrier defines a bit sequence that contains the

hidden message or data. The basic principle of

steganography ensures that modifications to the data in the

cover file must have insignificant or no impact to the final

presentation. Insignificant or no impact onfinal presentation

means changes so minor in nature that the casual observer

cannot tell that a hidden message is even present.

Every digital file is composed of a sequence of binary digits

(0 or 1). It is also a relatively simple task to modify the

content of a file by changing a single bit in the sequence.

Accomplishing the modification without changing the

presentation or the final form of the file is altogether a

different task. For example, the binary value of the decimal

number 13 consists of 4 bits (1101), changing one bit in the

sequence changes the decimal value of the number it

represents and ultimately changes the meaning of the value,

(i.e. 1100 is the decimal equivalent of the number 12 not

13). What is required for steganography is a data set

represented by large numbers of bits per datum. For

illustration, an electric signal conducted on a wire can

contain varying voltage levels over time. When using a

single bit to sample the voltage level, we can only represent

two states for any given time interval (off or on -> 0 or 1).

We cannot represent a specific value such as +3.3v unless

the value happens to be a boundary condition (i.e. the high

voltage of this signal is +3.3v). By adding bits to the

representation of the measurement we can reproduce

measurements between the boundary values. Two bits can

define up to four states (0, 1.1, 2.2, and 3.3v for example),

three can define eight, four bits define sixteen, and so on.

The level of precision used in the measurement is

proportional to the number of bits used in the binary

representation of the voltage level.

The downfall of using additional bits per datum is seen in

the impact to the size of the stored data that represents the

measured waveform. When measurements are taken over

time intervals, each additional bit multiplies the size of the

data file. Depending on the level of fidelity needed for the

data representation, additional bits can eventually cease to

contribute desirable or distinguishing information such as

round off errors (4.999999999999 vs. 4.999999999998). In

essence, additional bits can eventually become unnecessary

when the accuracy of the waveform has been achieved. A

trade off between file size and sample accuracy is often

performed and the bit depth (number of bits per sample)

chosen based on an amicable medium. Selection of the

optimum amount of bits needed to represent the information

using the smallest amount of storage space is a goal for

many data formats. Using the previous example, sampling

voltage level over discrete time intervals, it is also possible

to graphically represent the waveform in a voltage vs. time

plot. With enough bits to provide fidelity to the

measurement, a close approximation of the actual signal can

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1481

be reproduced. In the following example, 8 bits will be

chosen to represent a value between -5 and +5 volts with the

most significant bit determining the sign (+/-) of the

measurement. The remaining seven bits provide 128 discrete

values for the amplitude of the sampled voltage. Thus, each

discrete value is 0.04 volts. Voltage samples of the signal

taken 25,000 samples per second produce 25 Kilobytes (200

Kilobits) of data over a one second time interval.

A plot of our hypothetical wave form is displayed in Figure

1. Six randomly selected samples (represented by eight

binary digits) are included below simply to illustrate that the

binary data changes over the time interval.

 01001010, 01001011, 01001100, 01001101,

01001110, 01001111

Figure 1: Example carrier wave form and Binary Data

Representing Six Distinct Point.

By modifying the least significant bit of each sample, it is

possible to embed information into the waveform without

having significant impact to the graphical representation of

the data. In the next section the waveform above, and its

associated binary data, will become the carrier or cover file

for our steganographically embedded covert message.

3.1 Modifying the Carrier

Noting that by using 7 bits to represent 5 volts of amplitude,

we create a relatively small division between values

(0.04V). By modifying the least significant bit (LSB) of any

datum we can only change its reproduced value by the same

amount (0.04V). This imperceptible change means that

intentional modifications to the LSB of every sample may

go unnoticed and allow data to be embedded into the bit

sequence. Using sequential data points to carry our message,

we can inject a 25,000 bit message into the LSB for every

second of data we have recorded. When viewing the

waveform after modification, the difference in voltage at

any datum is imperceptible to the naked eye. To illustrate

01001010, 01001011, 01001100, 01001101, 01001110,

01001111, 01010000, 01010001 … In the event we wished

to inject the 8 bit message (11110000) into the data, we

would modify the corresponding LSBs of the above bit

stream to match our message. The resulting steganographic

data stream would become 01001011, 01001011, 01001101,

01001101, 01001110, 01001110, 01010000, 01010000 …

where the modified bits are in blue bold typeset. Note that

while the carrier data has changed, what is represented or

displayed in the final form (i.e. the form delivered to the end

user) has been modified only in an imperceptible manner.

Figure 2 shows our example waveform embedded with the

following ASCII message after conversion to binary: “The

truth shall set you free”. The existence of the embedded

message can only be seen in the blow-up of the first few

samples of the reproduced waveform.

Figure 2- Steganographically Injected Wave Form Blow–up Of

the Injected Data Area

3.2 Typical Carrier Data Types

Any file that requires multiple bits to reasonably quantify its

message such that minor changes to the data are

imperceptible when the file is presented in final form is an

acceptable candidate for a carrier. Digital data types fitting

this description include image, video and sound files, data

can even be embedded in standard TCP/IP packet headers.

The most common image formats include BMP, GIF, and

JPEG. The majority of software applications designed for

steganography utilize the JPEG image file format as the

carrier.

3.2.1 Audio Files

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1482

The human ear can distinguish frequencies between 20 Hz

and 20 kHz. By embedding a stream of data into an audio

signal at frequencies above those, the effect is inaudible and

cannot be detected by the human ear. Not only does the

carrier’s reproduction of the data sound identical to that of

the original, but the only impact the added data has is an

increase to the size of the file. A frequency spectrum

analyzer or a calculation of the total amount of data required

to produce the same audible spectrum over that time interval

would be able to detect the presence of the additional

information. LSB modification of the bit stream can also be

used but has a noticeable detrimental impact to the carrier

file when it is reproduced. Typically the reproduced audio

has a higher occurrence and level of what sounds like static

or hiss. As displayed in the blow-up of Figure 2, the audio

signal can be expected to diversify which results in an

increase in the amount and level of background noise.

3.2.2 TCP/IP Headers

Software for audio steganography is also widely available.

Formats suited for injection include WAV, PCM, AVI,

MIDI, MPEG, MP3, RIFF, and VOC. Finally, data hiding

software titles are available to embed information in unused

or hidden locations on physical drives. Through

manipulation of unused space or hidden directories, data can

be stored between files or at any unused area of the file

system. The tools take advantage of the slack space often

located between the legitimate end of a file and the start of

the next cluster.

Hidden directories can be created that are not included in the

allocation tables of the main operating system. Files are

stored in these directories through a ghost or mirror OS

directory structure that is managed by the software. By

using areas of the drive unlikely to be accessed by the OS or

by marking the sectors as bad or unreadable in the main OS

allocation, the steganography software is able to reduce or

eliminate the likelihood that the hidden data will be

overwritten. By encoding or encrypting the data stored in

slack space and hidden directories, this software is also able

to reduce the chance that simple file scans will detect or

indicate the presence of the hidden data.

The vast majority of the steganography titles incorporate the

use of cryptographic protocols such as AES, 3DES, RSA,

and Blowfish to either encrypt the hidden message prior to

embedding, or use the protocol to randomize the injection

sequence for the data. When the file containing the

embedded information is provided to the recipient, only the

correct password and decoding algorithm will produce the

decoding sequence or decrypt the embedded file.

4. COMMERCIALLY AVAILABLE

SOFTWARE

Johnson & Johnson technology consultants maintains a

website that contains a survey of more than 140 software

titles that perform steganography using all of the various

types of datafiles discussed earlier. The software includes

Freeware, Shareware, and licensed versions for both

individual and business users. Various titles on the site will

run on Linux variants, Microsoft Windows, and Macintosh

computers. Of the more than 140 titles listed on their web

site, over half (85) deal with embedding information in still

images. 37 of these titles can encode information into BMP

files, 20 into GIF, and 15 can embed data in JPEG files. The

remaining titles can use any binary input to produce encoded

PCX, PICT, and PNG output files.

The second most popular type of steganography software is

for plain text and HTML file types. The data is embedded

through the use of character spacing, insertion of sequences

of tabs and spaces at the end of the lines in the carrier file, or

through production of poorly formed English sentences and

poetry. Even the web site’s descriptions of these types of

tools indicate poor grammar and awkward word selection

when they write “substitution cipher that makes text files

look like a cross between adlibs and bad poetry”.

Software for audio steganography is also widely

available.Formats suited for injection include WAV, PCM,

AVI, MIDI,MPEG, MP3, RIFF, and VOC. Finally, data

hiding software titles are available to embed information in

unused or hidden locations on physical drives. Through

manipulation of unused space or hidden directories, data can

be stored between files or at any unused area of the file

system. The tools take advantage of the slack space often

located between the legitimate end of a file and the start of

the next cluster.

Hidden directories can be created that are not included in the

allocation tables of the main operating system. Files are

stored in these directories through a ghost or mirror OS

directory structure that is managed by the software. By

using areas of the drive unlikely to be accessed by the OS or

by marking the sectors as bad or unreadable in the main OS

allocation tables, the steganography software is able to

reduce or eliminate the likelihood that the hidden data will

be overwritten. By encoding or encrypting the data stored in

slack space and hidden directories, this software is also able

to reduce the chance that simple file scans will detect or

indicate the presence of the hidden data.

The vast majority of the steganography titles incorporate the

use of cryptographic protocols such as AES, 3DES, RSA,

and Blowfish to either encrypt the hidden message prior to

embedding, or use the protocol to randomize the injection

sequence for the data. When the file containing the

embedded information is provided to the recipient, only the

correct password and decoding algorithm will produce the

decoding sequence or decrypt the embedded file.

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1483

5. DETECTION AND RECOVERY METHODS

Steganalysis is the art and science behind the detection of

the use of steganography by a third party. The basic function

of steganalysis is to first detect or estimate the probability

that hidden information is present in any given file. The

detection and estimation is based only on the data presented

in its observable form (i.e. nothing is known about the file

prior to investigation). Because simply detecting the

presence of hidden data may not be sufficient, steganalysis

also covers the functions of extracting the message,

disabling and/or destroying the hidden message so that it

cannot be extracted, and finally, altering the hidden message

such that misinformation can be sent to the intended

recipient instead of the original message.

Depending on how much information is known about the

embedded image, steganalysis techniques and methods

closely mirror traditional cryptanalysis methods. The

steganalysis attack methods can be broken into six types:

• Steganography-only attack: Only the file with the

embedded data is available for analysis.

• Known-carrier attack: Both the original carrier file and the

final (hidden message embedded) files are available for

analysis.

• Known-message attack: The original message prior to

embedding in the carrier is known.

• Chosen-steganography attack: Both the algorithm used to

embed the data and the final (hidden message embedded)

file are known and available for analysis.

• Chosen-message attack: The original message and the

algorithm used to embed the message are available, but

neither the carrier nor the final (hidden message embedded)

file are. This attack is used by the analyst for comparison to

future files.

• Known-steganography attack: All components of the

system (the original message, the carrier message, and the

algorithm) are available for analysis.

It follows that the success of any steganalysis technique is

tied to the amount of information known about the file prior

to Investigation. As more information about the file is

known prior to investigation, the investigator can move from

simply detecting to modifying or altering the hidden

message before sending it on to the intended recipient. In the

first category (steganography-only attack), the purpose of

analysis is to simply detect the existence of a hidden

message.

Without prior knowledge of the encoding mechanism, key,

or data contained within the message, recovery of the

contents using this method while possible, can take an

excessive amount of time. With access to the original carrier

and the final file with the embedded content (known-

carrier), the purpose of analysis can move toward recovering

the embedded message by comparing the differences

between the two files. If the algorithm is known and the file

with the hidden message embedded is also available

(chosen-steganography attack), the analyst may have the

ability to reverse the embedding to recover the hidden

message and can easily alter or destroy the hidden contents.

Finally, if the analyst has the algorithm and a message prior

to embedding (chosen-message attack), they can move

towards identifying possible (hidden message embedded)

files to attempt to recover the original carrier. If the carrier

can be recovered or closely reproduced, the ability to insert

alternate messages in lieu of the original message is

possible.

The steganography-only attack can be accomplished through

the use of statistical analysis performed on the final

medium. In the following example, the color contents of

JPEG images are examined. A modification to each

coefficient’s LSB produces variations in the data that results

in deviations to the histogram for the given file. If the

deviations are large enough to produce noticeable

aberrations, the embedded file’s histogram can identify the

existence of the hidden message. Likewise, LSB

modifications to palette-based images (GIF, etc.) cause

duplications of the colors in the palette with identical or

nearly-identical colors appearing. This duplication of colors

can also serve as an indicator pointing to the existence of

hidden data.

When examining the grayscale histograms for an original

and a steganographically embedded JPEG (such as in Figure

3), slight deviations in the histograms are noticeable. The

grayscale histogram provides a cumulative value for all

three color channels (red, green, and blue) at each brightness

level (0-255). As such the value displayed in the graph for

brightness level 100, would be the total number of pixels in

the image with a value of 100 in grayscale brightness. By

modifying the original palette LSBs or the LSBs of the DCT

coefficients, the histogram values shift to reflect the change

in the number of pixels containing that specific value. To

demonstrate this phenomenon,

Figure 3 compares the same photograph in its original form

(containing 42,784 colors) to an embedded version of the

file (containing 42,886 colors)

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1484

Figure 3: Original & Steganographic(right) image

The arrows in the embedded histogram indicate two obvious

differences in the waveform (the introduction of pixels near

brightness level 64 and the reduction of pixels near level

175). Steganalysis takes this phenomenon one step further

by comparing the normalized distribution of colors against a

predicted value. For palette based images, a normal

distribution of color frequency is likely. A scalable standard

bell curve can be assumed as the comparison benchmark

against the suspect file. As seen previously, changes to the

LSBs for any given pixel can create duplicate (or near

duplicate) colors in the image’s color palette. The duplicate

colors increase the frequency for that value and can create a

spike in the distribution exceeding the benchmark reference.

Any large deviations from the benchmark can be an

indicator of anomalies or modifications to the contents of

the file. The process for JPEGs can be a bit more

complicated. Because the JPEG format does not use a

palette based encoding algorithm, a second step is necessary

to compare DCT frequency to a benchmark. Recall that

DCTs are reference points based on the quantized value for

each color channel in the 8 *8 grid . As references, they are

small by nature and plotting the frequency of a grid’s

coefficient values to another without compensating for the

quantization reference is pointless. Further, the value of any

given coefficient only affects a small percentage of the total

number of pixels in the image. When tallied individually,

the histogram for the DCTs will only tell whether the image

contains elements of high contrast or not. (i.e. a photo of the

blue sky vs. a picture of the international balloon fiesta in

Albuquerque, NM) . The coefficients for the blue sky should

have less variance than the coefficients for the photos of a

colorful balloon.

Algorithms that sequentially modify the DCT coefficients in

JPEG files tend to cause distortions in the histogram that

flatten out the frequency values of adjacent DCTs. To

compensate for this issue, newer algorithms do not

sequentially embed the data but rather use a password or key

to generate a random order for DCT or LSB modifications.

Some readily available software titles for steganography

detection include StegDetect, Stego Watch, and Steg Spy.

Each of these titles use some form of statistical analysis on

the target image to predict the existence of a hidden

message. Westfield and Pfitzmann used a X2 test to predict

the probability that an image contained steganographic

content by comparing the expected distribution (the null

hypothesis) against the sampled values. If the measured

value produced a deviation from the expected, then the

amplitude of the deviation was proportional to the

probability of steganographic content at that point in the file.

Because their algorithm ran on sequential bytes with an

increasing sample size for each calculation, when the

probability dropped, the size of the hidden message was

often revealed as well.

Statistical steganalysis has been made more difficult

recently because some steganography algorithms

specifically take measures to preserve the carrier file's first-

order statistics to avoid this type of detection. Further,

encrypting the content of the embedded message makes

detection even harder because encrypted data generally has

a high degree of randomness associated with it . After

detection of hidden content with a carrier file, the next step

is recovery of the hidden message itself. For known-carrier

and chosen-steganography attacks (where the algorithm

used to embed the data is known) some of the same

detection tools have been extended to make use of brute

force message recovery to also break the key used to embed

or encrypt the data. With respect to JPEG files, there are

several software titles that hide information using these

variations of LSB insertion. “JSteg sequentially embeds the

hidden data in least significant bits, JP Hide&Seek uses a

random process to select least significant bits, F5 uses a

matrix encoding based on a Hamming code, and Out Guess

preserves first-order statistics.” If intercepted en-route, after

the hidden message is recovered (by breaking the encryption

and embedding key or otherwise) the same carrier file can

be used to embed an alternate message prior to sending it on

to its final destination. Because modifications to the data

comprising the carrier file are made without incorporating a

mapping back to the original values, recovery of the original

carrier file is difficult and sometimes impossible.

6. DENYING STEGANOGRAPHY

Far from the technical challenges facing the detection and

recovery of hidden data, altering steganographically

embedded information for common carrier types is

relatively easy. System Owners and administrators seeking

to disrupt the communications channel provided by

steganography can implement file transformations in the

communication channel to accomplish this goal. Recalling

that the most common data types are image, video, and

sound files, one simple approach is to simply change the

format of (transform) the data by re-encoding it into an

alternate format. The use of a guard processor at the entry

and exit point(s) of the systems network could accomplish

this task. For example, Figure 4 displays a photograph of the

India Gate. The photo on the left is the original photo in a

bitmap format, the photo on the right has a Microsoft Office

Excel spreadsheet (64 Kb in size) steganographically

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1485

embedded in it. Again, the two photographs are

indistinguishable to the human eye. Proving that the files

contain differences can be done through the use of a

cryptographic hashing algorithm that verifies differences

indeed exist.

Figure 4: Original & Steganographic Bitmap

An MD5 128-bit hash provides a high degree of confidence

that different inputs produce different hash outputs. Thus,

differences in MD5 hashes provide a high level of certainty

that the given inputs (the binary contents composing the two

photos) contain differences. While the properties of the files

(image size, number of pixels, etc) remained identical

during the embedding process.

Table1-File properties

The photograph with the embedded data (New_steg.bmp) is

the same size, contains the same number of pixels, and the

same depth as the original but the binary contents of the file

are different than the original (New_orig.bmp). Visually, the

two files appear to be identical but the MD5 sum provides

credible evidence that that is not the case.

To illustrate how to defeat the steganographic mechanism,

the final file (New_steg.bmp) was converted into a JPEG by

opening it in Microsoft Paint and using the “save as” feature

to save it in the JPEG format. Note that the MD5 sum of

New_steg.jpg does not match either the original or the

embedded version of the photograph. An expected and

noticeable reduction in file size is achieved when using

JPEG compression. In this case, once the final file is

converted into a new format, the embedded message is

destroyed and the covert steganographic channel is

effectively denied.

The final step to proving this is the case was to reconvert the

JPEG image back into a bitmap. Again Microsoft Paint was

used to open the JPEG image and the “save as” feature was

used to save it in the bitmap format. Note that the recovered

image (New_recov.bmp) has identical properties to the

original and steganographic files, but contains a different

MD5 sum. The recovered image no longer contains the

hidden message and it is not the same file as the original.

The modifications to the original file when the Microsoft

Office Excel spreadsheet was embedded made irrecoverable

changes to the bits defining each pixel.

For video and audio files the process outlined above remains

the same. Convert the file to another format that requires a

conversion, such as a lossy compression or expansion

routine, and the embedded data will be destroyed in the

process. With the exception of high compression data

formats, the resulting “cleaned” reproduction of the file

should show no noticeable deviations from the original. For

text based denial techniques, the process can be a bit more

complicated. Removal and/or addition of carriage returns

and white space (such as adding an additional space after

every period in the text) can shift the placement of

characters which can break the character mapping

decryption keys rely on.

Techniques like this can also alter the spacing of characters

in a stepped character approach. Character space shifting

approaches often require that the final document, or at a

minimum the individual character, is an image instead of

text. These steganographic insertions can be defeated using

standard original character recognition software to rebuild

the original file from the OCR output. Documents that are

not image based (such as this report in its PDF format) can

have the text copied and pasted into another document.

Synonyms can also be used to replace the awkward text

often found when words are substituted in stepped character

routines. This approach not only denies the steganographic

channel, but leaves the intended message in the carrier intact

and can make the document more pleasant to read.

The injection of bits into the headers of TCP/IP packets does

not modify the content of the payload in any way.

Steganographic covert channels utilizing techniques such as

this are easily defeated through the use of monitoring

features at the switch or router level. Malformed packets can

MD5

File Name

Size(byte) Pixel Depth(bit)

New_orig.bmp c1b865197b559747be78a86bfa106b16

401,910 448*299 24

New_steg.bmp a39fb606650363bd064d5d76b0af3c10

401,910 448*299 24

New_steg.bmp a03448ae1050d4bece4be38615253fac

29,413 448*299 24

New_recov.bmp1e55e9e65645892af9fe24e195e4dd53

401,910 448*299 24

Vishwajeet Singh, IJECS Volume 2 Issue 5 May, 2013 Page No. 1479-1486 Page 1486

be screened out or modified to conform to a specific rule set.

Consider packets with the do not fragment (DF) bit

manipulated so that the packets carry a covert message. A

history or state based rule set could trigger on packets going

to the same destination under the same protocol but having

inconsistent DF bits.

Other network steganography denial techniques could

include a security specification stating that the DF bit on

every packet leaving the switch/router should have a value

of one and all packets entering should have a value of zero.

At a more rudimentary level (knowing that it could be

detrimental to some fragment sensitive applications)

network security could be achieved by forcing the above

conditions and modifying the flags.

7. Conclusion

Computer forensic professionals need to be aware of the

difficulties in identifying the use of steganography in any

investigation. As with many digital age technologies,

steganography techniques are becoming increasingly more

sophisticated and difficult to reliably detect. Once use is

detected or discovered, obtaining the ability to recover the

embedded content is becoming difficult as well. Acquiring

knowledge of current steganographic techniques, along with

their associated data types, can provide a critical advantage

to an investigator by adding valuable tools to their forensic

toolkit.

Finally, due to the relatively simple techniques capable of

denying the exploitation of a covert steganographic channel,

companies may wish to take precautionary measures. By

enacting measures discussed in this paper, they can ensure

their proprietary and trade secret information is not being

shoplifted inside of the daily podcast, shared in family

photos, or distributed via the latest YouTube video.

REFERENCE

1. Herodotus, “The Histories”, Penguin Classics;

Reprint edition, September 1, 1996

2. R. Krenn, “Steganography: Implementation &

Detection”, found online at

<http://www.krenn.nl/univ/cry/steg/presentation/20

04-01-21-presentation-steganography.pdf>

3. R. Rivest, “The MD5 Message-Digest Algorithm”, MIT

Laboratory for Computer Science and RSA Data

Security, Inc, April 1992, .can be found online at <

http://www.faqs.org/rfcs/rfc1321.html>

4. N. Johnson, “Digital Image Steganography and Digital

Watermarking Tool Table”, found online at

<http://www.jjtc.com/Steganography/toolmatrix.htm>

5. R. Krenn, “Steganography: Implementation &

Detection”, found online at

<http://www.krenn.nl/univ/cry/steg/presentation/ 2004-

01-21-presentation-steganography.pdf>

6. N. Provos and P. Honeyman, “Hide and Seek: An

Introduction to Steganography”

