

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 03 Issue 07 July, 2014 Page No. 6943-6949

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6943

An Efficient Job Scheduling Algorithm using Min-

Min and Ant Colony Concept for Grid Computing
Davinder Kaur

1
, Sarpreet Singh

2

 1Department of Computer Science Engg. ,Sri Guru Granth Sahib World University,
Fatehgarh Sahib, Punjab, India

davinder.gill301@gmail.com

2Department of Computer Science Engg. ,Sri Guru Granth Sahib World University,

Fatehgarh Sahib, Punjab, India

ersarpreetvirk@gmail.com

Abstract: Grid computing has emerged as an important field from the distributed and parallel computing where the resources of various

computers in the network are used to solve a particular problem, because of high demand of computational power and need of high

performance. To achieve the promising potential of grid computing, an effective and efficient job scheduling is required. Job scheduling is

used to schedule the user jobs to appropriate resources in grid environment. Min-Min is the most simple and well known scheduling

algorithm in grid computing that is used to minimize the makespan. The drawback of min-min algorithm is that the schedule produced by

min-min is not optimal with respect of load balancing and it is not effective for resource utilization and one resource can execute one job at a

time, the number of resources is known in prior. In this paper, a Min-Min Ant Colony (MMAC) algorithm is proposed that reduces the

makespan and maximize the resource utilization using the features of both min-min algorithm and ant colony optimization. It is a two phase

algorithm.

Keywords: Grid Computing, Job Scheduling, Min-Min algorithm, Ant Colony Optimization (ACO).

1. Introduction

Grid is a type of parallel and distributed system that enables

the sharing, selection and aggregation of resources distributed

across multiple administrative domains based on their

availability, capability, performance, cost and user’s quality-

of-service requirements [1]. Grid computing is recognized as

one of the most powerful vehicles for high performance

 computing for data-intensive scientific, business,

engineering applications. A Grid is loosely coupled,

geographically distributed and heterogeneous in nature. Foster

and Kesselman defined the Grid as follows [2]: A

computational Grid is a hardware and software infrastructure

that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities.

Grid is distinguished from traditional distributed computing

because of its focus on large-scale resource sharing and high

performance orientation. Grid computing evolved the great

technologies to effectively utilize the resources. To make use

of great capabilities of this distributed system, effective and

efficient scheduling algorithms are needed. Depending on their

goals, these algorithms assign jobs to the best machines which

produced better quality of service [3].

Scheduling is considered one of the important issue in grid

computing. Job Scheduling is choosing the most suitable

resource for a job to complete its execution either in terms of

waiting time, turnaround time or cost [4]. The traditional

scheduling algorithms does not work efficiently in the grid

environment due to its heterogeneous nature. The demand for

effective scheduling increases to achieve high performance

computing. Typically, it is difficult to find an optimal resource

allocation which minimizes the schedule length of jobs and

effectively utilize the resources. Scheduling on a grid has three

main phases [5]. Phase one is

resource discovery [6], which generates a list of potential

resources. Phase two involves gathering information about

those resources and choosing the best set to match the

application requirements. In phase three the job is executed.

Job scheduling is based on the necessity of a user who has a set

of jobs to execute. Grid user compose their applications as a

distributed applications. Sometime the user’s machine is not

able to process the jobs either because of resource or hardware

constraints, for such cases the user can use the grid system for

running the job. The user submits the set of jobs to the job

scheduler and the job scheduler splits the job depending on

certain factors and gives it to the machines having available

resources on the grid. The machines will complete the task and

final result will be given to the user[7].

There are relatively a large number of job scheduling

algorithms to minimize the total completion time of the jobs in

distributed systems. Actually, these algorithms try to minimize

the overall completion time of the jobs by finding the most

suitable resources to be allocated to the jobs. It should be

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6944

noticed that minimizing the overall completion time of the jobs

does not necessarily result in the minimization of execution

time of each individual job [8].

The most simple and well known algorithm that is used in grid

are Min-Min and Ant colony optimization. The min-min

algorithm estimate the execution and completion time of each

job on the each available resources in grid. The ant colony

algorithm for job scheduling in grid aims at submitted jobs to

resources based on the processing ability of jobs as well as the

characteristics of the jobs.

There are two phase in the Min-Min algorithm. In the first

phase it finds the minimum execution time of all tasks. Then in

the second phase it chooses the task with the least execution

time among all the tasks. The algorithm proceeds by assigning

the task to the resource that produces the minimum completion

time. The same procedure is repeated by Min-Min until all

tasks are scheduled. The following are the some limitation of

Min-Min algorithm:-

i. It chooses smaller tasks first which makes use of

resource with high computational power. As a result,

the schedule produced by Min-Min is not optimal

when number of smaller tasks exceeds the large ones.

ii. One resource can execute only one job at a time .

iii. Size and number of resources are static and should be

know in prior.[7]

ACO has been used by researchers in grid computing for

addressing load balancing [9], job scheduling [10] and related

problems. Ant colony algorithm is the bio-inspired heuristic

algorithm, which is derived from the social behavior of ants.

Ants work together to find the shortest path between their nest

and food source. When the ants move, each ant will deposit a

chemical substance called pheromone. Using this pheromone,

the shortest path is found. The same concept is used to assign

jobs in grid computing. When a resource is assigned a job and

completes its job then its pheromone value will be added each

time. If a resource fails to finish a job, it will be punished by

reducing pheromone value. The issue here is the stagnation,

where there is a possibility of jobs being submitted to same

resources having high pheromone value [7].

In the ant colony algorithm [10] , the load balancing method is

proposed to solve the issue of stagnation. The algorithm work

as follows :-

i. The user will send request to process a job

ii. The grid resource broker will find a resource for the

job

iii. The resource broker will select the resource based on

the largest value in the pheromone value matrix

iv. The local pheromone update is done when a job is

assigned to a resource.

v. The global pheromone update is done when a resource

completes a job

vi. The execution result will be sent to the use

When the resource broker select a particular resource for a job

j, jth column of the Pheromone Value matrix will be removed

and jobs will be assigned to other resources. Thus the load

balancing is achieved [7].

In this paper, a new scheduling algorithm is proposed to

resolve the above mentioned problems with the Min- min

algorithms by using the cons of both min-min algorithm and

ant colony optimization. The proposed algorithm applies the

Ant Colony Optimization in the first phase and then Min-Min

strategy for better result. The new algorithm is implemented in

real time environment using java. The result show better

resource utilization and minimum total completion time of

task.

The remaining parts of this paper are organized as follows:

Section 2 presents the related works and several well known

scheduling algorithms which are benchmarks of many other

works. In Section 3, a new scheduling algorithm is proposed

and the prominence of the algorithm is demonstrated through

an example. Section 4 compares the scheduling algorithms and

presents the results of the comparison. Finally, Section 5

concludes the paper and presents future works.

2. Related Work

Opportunistic Load Balancing (OLB) simply assigns tasks to

the next available machine. If more than one machine is

available, one machine is chosen arbitrarily. It does not take

into account the expected execution time of the task on that

machine. Thus it provides a load balanced schedule but it

produces a very poor makespan.

Minimum Execution Time (MET) assigns each task in an

arbitrary order to the machines that requires least execution

time without considering the availability of the resource and its

current load. This algorithm improves the makespan to some

extent but it can causes a severe load imbalance. The

motivation behind MET is to give each task to its best

machine. Its only advantage over MCT is its simplicity of

implementation.

Minimum Completion Time (MCT) assigns each task, in

arbitrary order, to the machine with the minimum expected

completion time for that task [11]. This causes some of the

tasks to be assigned to the machines that do not have the

minimum execution time for them. The intuition behind MCT

is to combine the benefits of OLB and MET, while avoiding

the circumstances in which OLB and MET perform poorly. But

this algorithm considers the job only one at a time.

T. Kokilavani et al., [12] have proposed a new scheduling

algorithm named Load Balanced Min-Min (LBMM) Algorithm

for Static Meta-Task scheduling in grid environment to

overcome the limitations of Min-Min algorithm. It is

performed in two-phases. It uses the advantages of Max-Min

and Min-Min algorithms and covers their disadvantages. In the

first phase the traditional Min-Min algorithm is executed and

in the second phase the tasks are rescheduled to use the

unutilized resources effectively. The LBMM algorithm reduces

the makespan and increases the resource utilization.

Saeed Parsa et al.,[8] have proposed a new task scheduling

algorithm in called RASA(Resource Aware Scheduling

Algorithm) , considering the distribution and scalability

characteristics of grid resources. RASA is composed of two

traditional scheduling algorithms: Max-min and Min-min. It

uses the Min-min strategy to execute small tasks before the

large ones and applies the Max-min strategy to avoid delays in

the execution of large tasks and to support concurrency in the

execution of large and small tasks. Experimental results show

that if the number of available resources is odd it is preferred to

apply the Min-min strategy in the first round otherwise is better

to apply the max-min strategy the first.

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6945

George Amalarethinam. D.I. et al., [11] have proposed a new

heuristic technique called Max- min Average algorithm for

task scheduling in the heterogeneous grid computing

environment. The aim of this proposed algorithm is to

minimize the idle time and makespan of the tasks. The

proposed algorithm Min-mean works in two phases. In phase

1, the task allocation is done based on the Max- min algorithm.

In phase 2, the mean of completion time of all the machines are

taken. The tasks allocated to the selected machines are

reallocated to the machines whose completion time is less than

the mean value.

Salman Meraji et al., [13] have proposed a new algorithm

which is called best-min algorithm in order to overcome the

disadvantage of min-min algorithm that is schedule produced

by min-min is not optimal with respect of load balancing and

max-min's relative time to finish assigning tasks is too high. It

is a two phase algorithm. The best-min algorithm uses min-

min to get the makespan in first step and

reschedule the tasks in the second phase in order to reduce the

makespan. There is a condition in algorithm that best-min

should consider all the resources in grid environment and this

is caused to maximize resource utilization as well. The best-

min try to minimize makespan while maximize resource

utilization and matching proximity.

HE. X et al., [14] have proposed a new algorithm based on the

conventional Min-Min algorithm to achieve high throughput

computing in grid environment. This proposed algorithm

named as QoS guided Min-Min for heuristic grid task

scheduling, schedules tasks requiring high bandwidth before

the others. Therefore, if the bandwidth required by different

tasks varies highly, the QoS guided Min- Min algorithm

provides better results than the traditional Min-Min algorithm.

Whenever the bandwidth requirement of all of the tasks is

almost the same, the QoS guided Min-Min algorithm acts

similar to the traditional Min-Min algorithm. Furthermore, it

also tolerates inaccurate execution estimations.

O. M. Elzeki et al.,[15] have proposed a algorithm called

Improved Max-Min Algorithm in cloud computing based on

comprehensive study of the RASA algorithm in scheduling

tasks and the concept of Max-min strategy. Improved Max-min

is based on the expected execution time instead of complete

time as a selection basis. Improved Max-min supports load

balance of available resources and allow concurrent execution

of submitted tasks with higher probability rather than original

Max-min.

Singh. M et al., [16] present a QoS based predictive Max-Min,

Min-Min Switcher algorithm for scheduling jobs in a grid. The

algorithm makes an appropriate selection among the QoS

based Max-Min or QoS based Min-Min algorithm on the basis

of heuristic applied, before scheduling the next job. The effect

on the execution time of grid jobs due to non-dedicated

property of resources has also been considered. The algorithm

uses the history information about the execution of jobs to

predict the performance of non-dedicated resources.

Kobra Etminani et al.,[3] have introduce a new scheduling

algorithm to achieve high computing throughput in a grid

environment, called Min-min Max-min Selective Algorithm

based on two conventional scheduling algorithms, Min-Min

and Max- Min. This algorithm uses the cons of both the

conventional algorithm and at the same time, overcome their

pros. The algorithm determines to select one of these two

algorithms, dependent on the standard deviation of the

expected completion times of the tasks on each of the

resources. The experimental results show that the Selective

algorithm outperforms the traditional Min-Min and Max-Min

heuristics.

Kumar Nishant et al., [17] proposed an algorithm for load

distribution of workloads among nodes of a cloud or grid by

the use of Ant Colony Optimization (ACO) . The main aim of

the algorithm is load balancing of nodes. This algorithm has an

edge over the original approach in which each ant build their

own individual result set and it is later on built into a complete

solution. However, in this algorithm the ants continuously

update a single result set rather than updating their own result

set. The algorithm uses the both forward and backward

movements for overload and underload.

Siriluck Lorpunmanee et al., [18] have developed a general

framework of grid scheduling using dynamic information and

an ant colony optimization algorithm to improve the decision

of scheduling. The performance of various dispatching rules

such as First Come First Served (FCFS), Earliest Due Date

(EDD), Earliest Release Date (ERD), and an Ant Colony

Optimization (ACO) are compared. It is found that the

scheduling system using an Ant Colony Optimization

algorithm can efficiently and effectively allocate jobs to proper

resources.

D.Maruthanayagam et al., [19] proposes an improved ant

colony scheduling algorithm combined with the concept of

Resource Aware Scheduling Algorithm (RASA).. The RASA

algorithm first estimates the completion time of the tasks on

each of the available grid resources and then applies the Max-

min and Min-min algorithms. Before assigning the tasks to

machines, the expected execution time for each task on each

machine must be estimated and represented by an Expected

Time calculation. And also this algorithm can find an optimal

processor and network for each machine to allocate a job that

minimizes the tardiness time of a job when the job is scheduled

in the system. The proposed scheduling algorithm is designed

to achieve high throughput computing in a grid environment.

3. Proposed Work

Our proposed job scheduling algorithm, MMAC, is presented

in Figure 1. It is a two phase algorithm. In the first phase ant

colony concept is used. The ant in the proposed algorithm will

continuously originate from the master node. The ant traverse

the width and length of the network in such a way that they

know about the location of overloaded and underloaded nodes

in a network. The ant along the movement can check the

processes of each node in the network and update the process

value in the database and also check which node responses

fast. The processes on the other nodes can be calculated using

the min-min algorithm or in java, processes can be calculated

using process thread. In the second phase, the master node

assign the job to a node who has a less processes using the

min-min strategy.

The proposed algorithm works slightly different from

conventional min-min algorithm. Instead of first calculating the

expected execution time of each job on the each machine and

then select the job who has a least completion time among all

the jobs. Assign that job to the resource that produces the

minimum completion time. The proposed algorithm assign the

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6946

job to resource on the basis of processes run on that resource.

RF means which resource responses first(RF).

No._of_Process (NOP): The NOP is the number of processes

on each resource in a network means how much machine is

utilized.

Figure 1. MMAC Algorithm

In the proposed (MMAC) algorithm, select one node as a

master node. The selection of master node is not a permanent

thing but a new master node can be elected if the previous node

stops functioning properly due to some inevitable

circumstances. The ant will continuously originate from master

node and check the processes of each node and update them in

database as mentioned above. Whenever client perform any

operation using client socket the request will first move to

master node. The master node based on the request check in

database for less utilized node. Then master node will send that

user request to another node who have less processes using

TCP socket. The master node can communicate with the other

nodes in a network using TCP socket. The ant can originate

after every 15-20 minute however any request from client side

arrived or not. This make MMAC more efficient to produce

which increase load balancing and resource utilization and

reduce makespan.

4. An Illustrative Example

Consider a grid environment with two resources R1 and R2

and a meta-task MT that contain four jobs T1, T2, T3 and T4.

The master node is schedule all the tasks within MT on the

available resources R1 and R2. The Min-Min algorithm is

simple and produces a better makespan than the other

algorithms discussed in the related work, the proposed

algorithm executes the ant colony concept in first phase for the

better load balancing and min-min algorithm is used in the

second phase to assign the jobs to resources who have less

process according to first phase. In the proposed algorithm the

computation time can be calculated by using formula:

Makespan = max(CT (ti , mj))

 CTij = ET-ST

 where CT Computational time

ET End time of job on the sub server

ST Start time when job is assigned to master server

Table 1 represents the computational time of the tasks on each

resource using above formula:

Table 1. Computational Time of Tasks

Tasks

Resources

R1 R2

T1 3 X

T2 5 5

T3 2 X

T4 1 X

X: The machine is not eligible for the task because of the more

processes on machine.

The static mapping of jobs to resources according to

conventional Min-Min is shown in Figure 2. Min-Min choose

the minimum completion time and so assign all the jobs to

resource R1and resource R2 remains idle. The makespan

produced by Min-Min is 11 sec.

Figure 2. Gantt chart of Min-Min Algorithm

 Figure 3. Gantt chart of MMAC Algorithm

According to the proposed MMAC algorithm when request for

task T2 arrived then processes on resource R2 is less than the

resource R1 so task T2 is schedule to resource R2 instead of

resource R1. The makespan produce by MMAC is 6 that is less

1. For all tasks ti in MT & all resources Rj

2. At starting all resources will be free &

initialize the parameter NOP

3. Scanning thread (Ant) scan all resources in

that network

4. Check the NOP and RF for every resource

5. Store the value of NO in database

6. From database select resource with minimum

value of NOP

7. Assign the job to selected resource

8. If new job arrived

9. Go to step no. 3

10. Elseif job does not arrived within 20 minute

than ant again scan the resources for checking

the processes on each resource

11. Else exit

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6947

than Min-Min. Mapping of tasks based on MMAC is shown in

figure 3.

5. Results and Comparison

To evaluate and compare the efficiency of the proposed

algorithm, problems having machine heterogeneity and task

heterogeneity are collected from various literature [3], [12],

[14] and execute the proposed MMAC algorithm. The

proposed algorithm can be implemented in real environment

using Java Development Kit and Wamp server. The results

obtained (in sec) for the algorithms are tabulated and shown in

Table 2.

Table 2. Comparison of Min-Min and MMAC algorithm

Problem set Min-Min(in

sec)

MMAC(in sec)

P1 8 5

P2 16 10

P3 33.4 25

P4 33.9 28

P5 11 6

To see how MMAC outperforms Min-Min the results are

plotted in a graph and shown in Figure 4. From following

figure we can observe that MMAC tries its best to produces

less makespan than the Min-Min algorithm for all problems.

Figure 4. Graphical representation to show improvement of

MMAC outperforms Min-Min

Further for load balancing the proposed algorithm uses the

concept of ant colony. The MMAC according to the processes

on each resource tries its best to use all the available resources

in a network. For some problems proposed algorithm uses the

same amount of resources, but balances the load in those

resources than Min-min. Table 3 shows the resource utilization

rate of both algorithms. Resource utilization for a particular

problem is calculated using the following formula:

R= Mi * CTij *100/TNP

Here TNP represents Total Number of Processes on Resource

to which the job is assigned.

The resource utilization rate is represented as graph in Figure

5. From the following figure we can observe that MMAC uses

the maximum amount of resources while reducing the

makespan obtained from Min-Min algorithm.

Table 3. Resource Utilization in Percentage

6. Conclusion

Min-Min algorithm are applicable in small scale distributed

systems. When the number of the small tasks is more than the

number of the large tasks in a meta-task, the Min-Min

algorithm cannot schedule tasks, appropriately, and the

makespan of the system gets relatively large. Furthermore it

does not provide a load balanced schedule and in this one

resource can execute only one job at a time. To overcome the

limitations of Min-Min algorithm and to achieve high

computing throughput in a grid environment, a new

scheduling algorithm, is proposed. It is performed in two-

phases. It uses the advantages of Min-Min and ant colony

algorithms and cover the disadvantages of min-min algorithm.

The proposed algorithm is based on processes on each

resource. Evaluation of our new heuristic is done using JDK

and wamp server. The experimental results obtained by

applying the proposed algorithm for various problems shows

that it outperforms the existing scheduling algorithms. This

study is only concerned with the number of the resources

.number of processes and task execution time. The study can

be further extended by considering low and high machine

heterogeneity and task heterogeneity. Also considering the cost

factor for job execution and cost of communication and some

other can be other open problem in this area.

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 03 Issue 07 July, 2014 Page No. 6943-6949

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6948

Figure 5. Graphical representation to show more resource utilization of MMAC over Min-Min

References

[1] N.A. Azeez1; A.P. idoye; A.O. Adesina; K.K. Agbele;

Iyamu Tiko, and I.M. Venter, “Peer to Peer Computing and

Grid Computing: Towards a Better Understanding”, 2011.

[2] I. Foster and C. Kesselman. “The Grid: Blueprint for a

New Computing Infrastructure”. Morgan Kaufmann, San

Francisco, CA, July 1998.

[3] Kobra Etminani , Mahmoud Naghibzadeh , Noorali

Raeeji Yanehsari , “A HYBRID MIN-MIN MAX-MIN

ALGORITHM WITH IMPROVED PERFORMANCE”,

ubicc.

[4] Dipti Sharma, Mr. Pradeep Mittal , “Job Scheduling

Algorithm for Computational Grid in Grid Computing

Environment”, International Journal of Advanced Research

in Computer Science and Software Engineering, Vol. 3,

Issue 5, May 2013.

[5] J. M. Schopf, “A General Architecture for Scheduling on

the Grid”, Special issue of JPDC on Grid Computing, 2002

.

[6] E. Bagheri, M. Naghibzadeh, “A New Approach to

Resource Discovery and Dissemination for Pervasive

Computing Environments Based on Mobile Agents”,

Scientia Iranica Journal, Vol. 14, No. 6, pp. 612-624, 2007.

[7] G. Jaspher W. Kathrine and Mansoor Ilaghi U,“Job

Scheduling Algorithms in Grid Computing – Survey”,

International Journal of Engineering Research &

Technology (IJERT) Vol. 1 Issue 7, September - 2012 ISSN:

2278-0181.

[8] Saeed Parsa and Reza Entezari-Maleki, “RASA: A New

Task Scheduling Algorithm inGrid Environment,” World

Applied Sciences Journal,7(Special Issue of Computer &

IT),pp 152-160, 2009

[9] H. Jamal, A. Nasir, K. Ruhana, K. Mahamud and A.M.

Din, Load Balancing Using Enhanced Ant Algorithm in

Grid Computing, Proceedings of the Second International

Conference on Computational Intelligence, Modelling and

Simulation, pp. 160-165, 2010.

[10] Ku Ruhana Ku-Mahamud and Husna Jamal Abdul

Nasir. “Ant Colony Algorithm for Job Scheduling in Grid

Computing”, in 2010 Fourth Asia International Conference

on Mathematical/Analytical Modelling and Computer

Simulation, IEEE Computer Society 2010, pp. 40-45.

[11] George Amalarethinam. D.I, Vaaheedha Kfatheen .S,

“Max-min Average Algorithm for Scheduling Tasks in Grid

Computing Systems”, International Journal of Computer

Science and Information Technologies, Vol. 3 (2) , 2012

,3659-3663.

[12] T. Kokilavani, Dr. D.I. George Amalarethinam, “Load

Balanced Min-Min Algorithm for Static Meta-Task

Scheduling in Grid Computing” International Journal of

Computer Applications (0975 – 8887) Volume 20– No.2,

April 2011

[13] Salman Meraji, M. Reza Salehnamadi, “A Batch Mode

Scheduling Algorithm for Grid Computing,” Journal of

Basic and Applied Scientific Research, Year :2013,

Volume: 3, Issue: 4, pp. 173-181, ISSN 2090-4304

[14] HE. X, X-He Sun, and Laszewski. G.V, "QoS Guided

Min- Min Heuristic for Grid Task Scheduling," Journal of

Davinder Kaur
1
 IJECS Volume 3 Issue 7 July,2014 Page No.6943-6949 Page 6949

Computer Science and Technology, Vol. 18, pp. 442-451,

2003.

[15] O. M. Elzeki , M. Z. Reshad , M. A. Elsoud ,

“Improved Max-Min Algorithm in Cloud Computing”,

International Journal of Computer Applications (0975 –

8887) Volume 50 – No.12, July 2012.

[16] Singh. M and Suri. P.K, QPS A QoS Based Predictive

Max-Min, Min-Min Switcher Algorithm for Job Scheduling

in a Grid, Information Technology Journal, Year: 2008,

Volume: 7, Issue: 8, Page No.: 1176-1181.

[17] Kumar Nishant, Pratik Sharma, Vishal Krishna, Chhavi

Gupta and Kunwar Pratap Singh et al., “Load Balancing of

Nodes in Cloud Using Ant Colony Optimization” 14th

International Conference on Modelling and Simulation,

2012

[18] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan

Abdullah, and Chai Chompoo-inwai, “An Ant Colony

Optimization for Dynamic Job Scheduling in Grid

Environment” world Academy of Science, Engineering and

Technology International Journal of Computer, Information

Science and Engineering Vol:1 No:5, 2007

[19] D.Maruthanayagam, Dr. R.Uma Rani, “Improved Ant

Colony Optimization for Grid Scheduling” IJCSET

|November 2011 | Vol 1, Issue 10, 596-604

Author Profile

Davinder Kaur is a M.Tech. student in the Department of

computer science and engineering at Sri Guru Granth Sahib World

University of Fatehgarh Sahib, Punjab, India. She received the

B.Tech. degree in information technology from Banda Singh

Bahadur Engineering College of Fatehgarh Sahib in 2012. Her

research interests include grid computing, data mining and cloud

computing

.

Sarpreet Singh received his B.Tech degree in Computer Science

from Sant Longowal Institute of Engineering and Technology

(SLIET) of Punjab in 2006, M.Tech degree in Computer

Science from Punjabi University Patiala of Punjab in 2009. He is a

Assistant Professor of Computer Engineering at Sri Guru Granth

Sahib World University, Fatehgarh Sahib now. His research

interests include Grid computing, Distributed databases design

concepts and knowledge management..

