

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 03 Issue 07 July, 2014 Page No. 6926-6942

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6926

Numerical Solutions of Ordinary Differential Equations Using

Mathematica

Adoh, A. C., Ojobor, S. A.

Department of Mathematics and Computer Science, Delta State University, Abraka.

E-mail: adohazuka@live.com

Department of Mathematics and Computer Science, Delta State University, Abraka.

E-mail: ojoborsun@yahoo.com

ABSTRACT

This paper investigated the numerical solution of linear ordinary differential equations using Mathematica. The

computational software (Mathematica) automates tedious numerical computations, making it easier to generate

accurate numerical solutions. Several programming paradigm can be used to implement these numerical

algorithms (methods) via Mathematica, but this paper briefly featured two of the programming paradigm, the

Recursive and Functional paradigm. The software to generate the necessary solution to a given ordinary

differential equation, plot its graph and compare the different numerical methods for higher accuracy using the

plotted graphs. We compare the NDSolveapproachin Mathematica with that of Euler and Runge-Kutta method.

We observe that the NDSolve and Runge-Kutta produces similar results.

Keywords: Mathematica, Wolfram Language, Programming Paradigm, Differential Equation.

INTRODUCTION
Differential equations play a vital role in modern world today. They occur widely as mathematical models in

the physical world, and their numerical solution is important throughout the science and engineering. If a differential

equation contains only ordinary derivatives of one or more unknown functions with respect to a single independent

variable, it is said to be an ordinary differential equation (ODE). The term ordinary is used in contrast with the term

partial differential equation which may be with respect to more than one independent variable (Zill, 2013).

Numerical methods are mainly used to solve complex problems physically or geometrically; finding and interpreting

the solutions of these differential equations numerically is therefore a central part of applied mathematics, and a

thorough understanding of how to find these solution with the use of computers (Mathematica) is essential to any

mathematician, scientist and engineer.

Mathematicais a powerful software package used for all kinds of symbolic and numerical computations. It has

been available for around 25 years. Mathematica is sometimes viewed as a very sophisticated calculator useful for

solving a variety of different problems, including differential equations. However, the use of the term “calculator” is a

misnomer in the case of Mathematica. Mathematica has its own programming language and has sophisticated graphics

and visualization capability which, combined with the use of dynamic interactivity, makes it a valuable tool for any

professionals(see Mokhasi et al, 2012 and Wellin, 2013).

Mathematica’s diversity makes it particularly well suited to performing many calculations encountered when

solving many ordinary and partial differential equations. In some cases, Mathematica’s built-in functions can

immediately solve a differential equation by providing an explicit, implicit, or numerical solution (Abel & Braselton,

2004).

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6927

(Sofroniou & Knapp, 2008), gave an overall introduction and in-depth elucidation of solving differential equations

with Mathematica’s built-in function NDSolve. NDSolve is a general numerical differential equation

solver.NDSolvehandles both single differential equations, and sets of simultaneous differential equations.It can

handle a wide range of ordinary differential equations (ODEs) as well as some partial differentialequations (PDEs).

The Mathematica’s built-in function NDSolveis designed to solve all kinds of differential equations and to

work for the broadest possible set of situations, but might have occasional trouble with certain exceptional cases.

Thus, it is important to know how to implement the several numerical algorithms for finding numerical solutions to

ordinary differential equations (Kapadia, 2008).

The purpose of this paper is to implement some numerical methods for finding solutions to linear ordinary

differential equations using the Mathematica programming language. The Mathematica programming language

officially known as the Wolfram Language is a highly general multi-paradigm programming language developed by

Wolfram Research, which serves as the main interfacing language for Mathematica. It is designed to be as general as

possible, with emphasis on symbolic computation, functional programming, and rule-based programming. Some other

important programming paradigm that Mathematica supports are procedural, recursive, array programming paradigms

etc.

This paper focuses on the implementation of the Euler’s method and the classical Runge-Kutta method or the fourth

order Runge-Kutta method for finding numerical solutions to ordinary differential equations. To demonstrate the

implementation of these numerical algorithms, this paper delivers the solution of first and second order linear ordinary

differential equations using the recursiveandfunctional programming paradigms respectively via the Wolfram

language.

We note here that the second order differential equations must be reduced to an equivalent system of two first order

differential equations before we implement the algorithm for finding its numerical solution.

BUILT IN MATHEMATICA FUNCTION (NDSolve)

In this section, we will give an example of solving an ordinary differential equation with the built-in

Mathematica numerical differential equation solver,NDSolve. NDSolve returns the exact solution to the differential

equation supplied to it. It returns the solution in terms of an InterpolatingFunction object.

The InterpolatingFunction is an internal object within Mathematica that contains the numerical solution data.

The function can be used as a “black-box” function which can be used for further mathematical operations like taking

derivatives, integrating, etc. in a unified manner (Mokhasi et al, 2012).

Mathematica contains extensive documentation that we can access in a variety of ways. The easiest wayto find more

information about NDSolve is to evaluate ?NDSolvein the Mathematica notebook, then the usage message for

NDSolve will be displayed in the notebook as shown below.

The command

attempts to generate a numerical solution of

http://reference.wolfram.com/mathematica/ref/NDSolve.html

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6928

{

 ()

 ()

valid for .

NDSolverepresents solutions for the function ()as InterpolatingFunction objects. The

InterpolatingFunction objects provide approximations to the ()over the range of values to for the

independent variable .

In general, NDSolvefinds solutions iteratively. It starts at a particular value of , and then takes a sequence of steps,

trying eventually to cover the whole range to . In order to get started, NDSolvehas to be given appropriate

initial conditions for ()and its derivatives. For example, we will solve a first and second order initial value problem

using NDSolveand then visualize their graphs using thePlotfunction.

Consider the first order initial value problem taken from Bronson & Costa, 2006.

 () ()

We obtain the numerical approximation of its solution in the interval , using an initial condition for at by

entering

into our Mathematica notebook, and then evaluating gives,

theInterpolatingFunction which provide approximations to ()over the range of values to for the

independent variable .

Entering (replacement rule) evaluates the numerical solution at .

.

The result () means that () .

We can also generate the numerical solution from through using the step size, .

Using the Mathematica functionTable, we define the values of () and entering , we

generate the numerical solution in the interval to , and store the solution in the variable

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6929

From the , we can extract the values of

And present the numerical solution in a tabular form

This solution is the numerical exact solution to the initial value problem ().

Now, we use the Plotcommand to graph the solution for .

Considering a second order initial value problem

 () () ()

NDSolvecan solve this problem directly, or we can choose to reduce it to its equivalent system of first order

differential equations. Entering the equation directly and evaluating at , we get,

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6930

Similarly, reducing () it to its equivalent first order system,

and entering it into the Mathematica notebook, evaluating at gives,

The output () generated means () and () .

We can also compute the numerical solution from to using step size of .

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6931

This is also the exact numerical solution to the second order initial value problem ().

And the graph of the solution for is

IMPLEMENTATION OF THE NUMERICAL ALGORITHMS

FIRST ORDER DIFFERENTIAL EQUATIONS

Consider the initial value problem of the first order

{

 ()

 ()

Using the recursive programming paradigm, we will implement the Euler’s method and the Runge-Kutta

methods/algorithms for find numerical solutions to first order linear differential equations via the Wolfram language.

Euler’s Method

The Euler’s method/algorithm is given as

 () ()
where

 ()
Following the algorithm, suppose we choose to find the approximate solution of() on the interval

 with . The Mathematica subroutine using Recursive approach can be written as follows:

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6932

Looking at the nine lines of code carefully. The first line simply clears all previous values for the variables we wish to

use. The second line defines the equation in the initial value problem under consideration. The third through the

seventh line sets constants and establishes the initial condition. The numerical calculation starts from , so we

obviously set . We chose the initial condition that and so we established that condition. The step

size is also clearly defined and also the number of steps (iteration) using the formula () ⁄ , but

is replaced with in the subroutine.

The eighth line of code calculates the value of for the iteration. Examining the ninth line, The "new" value of

to be computed is represented by ; this is equated to the previous value of (namely,) plus the product

of and () (namely, () where is the previously calculated value of .

Evaluating the code will not producing any result, so we have to use the function Tableto calculate the set of ordered

pairs () for , naming the result , and then usingthe function TableFormto

outlook in traditional row-and-column form

Also, adding labels (and) to the result () using the Joincommand and then ListPlotto plot, we

have,

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6933

To compare the result gotten using the Euler’s method () to the exact solution ()we got

usingNDSolve, we use the function Showto display together with

The

Clas

sical

Run

ge-Kutta Method

The Classical runge-kutta method/algorithm is given as

 ()

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6934

() ()

where

 ()

 (

)

 (

)

 ()
and

 ()
Now, we proceed with the implementation of the algorithm using the recursive paradigm. Considering the

approximate solution of() on the interval with . Thus, the subroutine is

The lines of codes here are almost the same with that of the Euler’s method,but the only difference is that the

intermediate values of , that is, are wrapped together with in Moduleso as to localize them.

Evaluating the code and then usingTableto calculate the set of ordered pairs () for ,

naming the result , and also using TableFormto view it in the traditional row-and-column form.

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6935

The graph of the solution is

The graphical comparism of the result obtained using the Runge Kutta method () and that of the exact

solution gotten using NDSolveis

SECOND ORDER DIFFERENTIAL EQUATIONS

Consider the initial value problem of the first order

 ()

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6936

{

 ()

 ()
 ()

Using the functional programming paradigm, we will also implement the Euler’s method and the Runge-Kutta

methods/algorithms for find numerical solutions to second order linear differential equations via the wolfram

language.

Consider the initial value problem

 () ()
 ()

which can also be written as

 ()
 (),

 () ()
after it has been reduced to its equivalent system of first order differential equations.

The subroutines that will be written using the Functional programming paradigm will feature one important

Mathematica function,NestList. NestListgives a list of the results of applying a function to an

expression, 0 through times.

For example,

In the first example above, NestList first keep as part of it result and the apply to producing (), and then

applying to () producing (()) and so on four times and the same principle applies to the second example.

(Wellin, 2013).

Now, we move to implementing the numerical methods using Mathematica coupled with the visualization of the

results they produce.

Euler’s Method

The Euler’s method/algorithm() above for finding numerical solutions to first order differential equations can be

applied to differential equations of order two when it has been reduced to its equivalent system of two first order

equations. The algorithm is given as

 ()

 ()
where

 ()

Suppose we choose to find the approximate solution of equation () on the interval with . Its

equivalent of two first order equation is

The following Mathematica subroutine will generate the appropriate numerical solution to the system above.

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6937

The subroutine() has eight lines of code. The first line simply clears all previous values for the variables we

wish to use. The second, third and fourth lines sets constants and establishes the initial condition. The numerical

calculation starts from , so we obviously set . The step size is also clearly defined and also the

number of steps (iteration) using the formula () ⁄ , but is replaced with in the subroutine.

And wrapped withIntegerPart, this is because produces a real number when evaluated, but

requires its third argument to be an integer.

The fifth and sixth lines define the equation in the initial value problem under consideration. The seventh line creates a

function containing the most important part of the algorithm which will then be supplied to theNestList.

NestList will apply the function to () through times thereby producing the required

solution to the initial value problem and storing it in a variable called .

The is the approximate solution of the initial value problem under consideration, which has been stored in the

variable .

We get a better view of the result usingTableForm, knowing that the first column is the -values, the second column

is the numerical solution(that is -value, while last column is the -value.

And now, we visualize the result by extracting the and -values and plotting them using ListPlot

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6938

A comparism of the graph (Figure 9) with the exact graph (Figure 2) using Showwill produce

The Classical

Runge-Kutta Method for Systems

The Classical Runge-Kutta method/algorithm() can also be appliedto second order differential equations when it has

been reduced to its equivalent system of two first order equations. The algorithm is as follows

()

()

where

 ()

 ()

 (

)

 (

)

 (

)

 (

)

 ()

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6939

 (

)

 (

)

and

 ()
Proceeding with the implementation of the Runge Kutta methodusing Mathematica while focusing on the approximate

solution of()on the interval with , which is equivalent to the first order system

The Mathematica subroutine is

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6940

The implementation is similar to that of the Euler’s method. The first line simply clears all previous values for the

variables we wish to use. The second, third and fourth lines sets constants and establishes the initial condition. The

numerical calculation starts from , so we obviously set The step size is also clearly defined and

also the number of steps (iteration) using the formula () ⁄ , but is replaced with in the

subroutine.

And wrapped withIntegerPart, this is because produces a real number when evaluated. but

requires its third argument to be an integer.

The fifth and sixth lines define the equation in the initial value problem under consideration. The seventh through the

fourteenth lines defines the intermediate functions for the computation of the intermediate values of

 and . The fifteenth line creates the function containing the most important part of the

algorithm which will then be supplied to theNestList. NestListwill apply the function to ()

through times thereby producing the required approximate solution to the initial value problem and storing it in

a variable called .

The is the approximate solution of the initial value problem(), which has been stored in the variable

 .

Using TableFormand knowing that the first column is the -values, the second column is the numerical

solution(that is -value), while last column is the -value.

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6941

The result is hereby visualized using ListPlot

And the comparism of this result with the exact solution is

 ()

 ()

Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6942

CONCLUSION

Mathematica’s diversity makes it particularly well suited to performing many calculations encountered when solving

many ordinary differential equations. Invariably, we can say that Mathematica has saved time consumption because of

its high speed computation capabilities and performance and to generate these solutions, we must instruct the

computer via the Wolfram language to implement the necessary numerical method for solving these ordinary

differential equations.

In many cases, seeing a solution graphically is most meaningful, so the relevance of Mathematica’s outstanding

graphics capabilities cannot be over-emphasized. Our modern technology would have not come to be or would have

suffered deficiency without the use of a numerical computational machine such as Mathematica.

REFERENCES

Abell, M. L., & Braselton, J. P. (2004). Differential Equations with Mathematica (3rd ed.). Elsevier Academic Press.

New York.

Bronson, R. & Costa G. (2006). Shaum Series Outline Differential Equation (3rd ed.). Mc Graw-Hill Company Inc.

USA.

Kapadia, D. (2008). Differential Equation Solving with DSolve. Wolfram Mathematica Tutorial Collection.

http://reference.wolfram.com/mathematica/tutorial/DSolveOverview.html

Mokhasi P., Adduci, J. & Kapadia, D. (2012). Understanding Differential Equations Using Mathematica.

http://www.codee.org/library/articles/understanding-differential-equations-using-mathematica-and-

interactive-demonstrations

Sofroniou, M. & Knapp R. (2008). Advanced numerical differential equation solving in Mathematica. Wolfram

Mathematica Tutorial Collection. http://reference.wolfram.com/mathematica/tutorial/NDSolveOverview.html.

Wellin, P. (2013). Programming with Mathematica (1st ed.). Cambridge University Press. New York.

Zill, D. G. (2013). A First Course in Differential Equations with Modelling Applications (10th ed.). Brooks/Cole

Cengage Learning. USA.

