

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 03 Issue 07 July, 2014 Page No. 6904-6908

Inderpreet Kaur
1 IJECS Volume 03 Issue 07 July,2014 Page No.6904-6908 Page 6904

Detection of Crash Transient Failure during Job

Scheduling using Replication Technique

Inderpreet Kaur
1
, Sarpreet Singh

2

1Department of Computer Science Engg. ,Sri Guru Granth Sahib World University,

Fatehgarh Sahib, Punjab, India

inderpreetrao@gmail.com

2Department of Computer Science Engg. ,Sri Guru Granth Sahib World University,

Fatehgarh Sahib, Punjab, India

ersarpreetvirk@gmail.com

Abstract: Grid computing or computational grid is always a vast research field in academic. Computational grid provides resource sharing

through multi-institutional virtual organizations for dynamic problem solving. Various heterogeneous resources of different administrative

domain are virtually distributed through different network in computational grids. Thus any type of failure can occur at any point of time

and node running in grid environment might fail. Hence fault tolerance is an important and challenging issue in grid computing as the

dependability of individual grid resources may not be guaranteed. In order to make computational grids more effective and reliable fault

tolerant system is necessary. The objective of this paper is to test the crash and omission transient failure in resource scheduling. This paper

presents an overview of fault tolerance and its techniques, task replication and most fitting resource allocation algorithm.

KEYWORDS:- Computational grid, Fault tolerance, Failure, Task Replication

1. Introduction

Grid computing is a form of distributed computing that

involves coordinating and sharing computational power, data,

and storage and network resources across dynamic and

geographically dispersed organizations [1]. A grid [2], known

to be a large-scale virtual organization, is enabling to solve

complex scientific and compute-intensive problems. The

virtual organization is formed with geographically distributed

hardware and software infrastructure of flexible, secure and

coordinated shared vast amounts of heterogeneous resources

from multiple administrative domains. Computational grid

environment is shown in Figure 1.

Figure 1: Computational Grid Environment [3]

Heterogeneous computational nodes have connected to form a

Grid test-bed. In this test-bed registered resource database and

Grid resources server is also shown. Server or database might

be accessed during computation of large job. User can submit

job through any node among Node A, Node B, Node C, Node

D or Node E in Grid. Job might necessitate adapting the

changed resource scenario in Grid environment. Hence, fault

tolerance of resources is major challenging issue in dynamic

virtual computational Grids.

Fault tolerance is an important property in grid computing as

the dependability of individual grid resources may not be

guaranteed. In many cases, an organization may send out jobs

for remote execution on resources upon which no trust can be

placed; for example, the resources may be outside of its

organizational boundaries, or may be shared by different users

at the same time.

A fault tolerant approach may therefore be useful in order to

potentially prevent a malicious node affecting the overall

performance of the application. As applications scale to take

advantage of Grid resources, their size and complexity will

increase dramatically.

A major challenge in a dynamic grid with thousands of nodes

connected to each other is fault tolerance. The more resources

and components involved the more complicated and error-

prone becomes the system. To comprehend fault tolerance

mechanisms, it is important to point out the difference between

faults, errors and failures [4].

Inderpreet Kaur
1 IJECS Volume 03 Issue 07 July,2014 Page No.6904-6908 Page 6905

 Fault: A fault is a violation of a system’s underlying

assumptions.

 Error: An error is an internal data state that reflects a fault.

 Failure: A failure is an externally visible deviation from

specifications.

 Transient Failure: Staying for a short time period.

 Crash: When nothing happens.

 Omission: Error occurs when one or more responses fail.

In reality, a fault need not result in an error, or an error in a

failure.

Different types of faults, classified based on several factors, are

mentioned in the following:

 Physical faults: faulty storage, faulty CPUs, faulty memory.

 Unconditional termination: Mostly, user pressed Ctrl+C.

 Network faults: packet corruption, faults due to network

partition, packet loss.

 Lifecycle faults: Legacy or versioning faults.

 Processor faults: Machine or operating system crashes.

 Media faults: Disk head crashes.

 Service expiry fault: The service time of a resource may

expire while application is using the resources in grid.

 Process faults: software bug, resource shortage.

 Interaction faults: timing overhead, protocol

incompatibilities, security incompatibilities, policy

problems.

2. Review of Fault Tolerance Techniques

The main objective of grid computing is to maintain the

workflows or services in presence of faults so that no failure

stage is reached. This section presents a few fault tolerant

techniques in the following:

2.1. Replication Technique

The term replication implies making copies or replicas of an

existing entity. In grid environment, Job or task or data are

replicated to tackle the faults. Replication technique to improve

the fault tolerance of the fittest resource scheduling

algorithm[5]. The fittest resource scheduling algorithm

searches for the appropriate resource based on the job

requirements, in contrary to the general scheduling algorithms

where jobs are scheduled to the resources with best

performance factor.

2.2. Checkpointing

The check pointing is one of the most popular technique to

provide fault-tolerance on unreliable systems. It is a record of

the snapshot of the entire system state in order to restart the

application after the occurrence of some failure. The

checkpoint can be stored on temporary as well as stable storage

[6]. However, the efficiency of the mechanism is strongly

dependent on the length of the check pointing interval.

Frequent check pointing may enhance the overhead, while lazy

check pointing may lead to loss of significant computation.

Hence, the decision about the size of the check pointing

interval and the check pointing technique is a complicated task

and should be based upon the knowledge about the application

as well as the system.

Therefore, various types of check pointing optimization have

been considered by the researchers, e.g., (i) Full check pointing

or Incremental check pointing (ii) Unconditional periodic

check pointing or Optimal (Dynamic) check pointing (iii)

Synchronous (Coordinated) or asynchronous (Uncoordinated)

check pointing, and (iv) Kernel, Application or User level

check pointing.

A. In pro-active mechanisms, the failure consideration

for the grid is made before the scheduling of a job,

and dispatched with hopes that the job does not fail.

Whereas, post-active mechanisms handles the job

failures after it has occurred. However, in the dynamic

systems only post-active mechanism is relevant [7].

B. In order to detect occurrence of fault in any grid

resource two approaches can be used: the push or the

pull model. In the push model, grid components

periodically send heartbeat messages to a failure

detector, announcing that they are alive. In the

absence of any such message from any grid

component, the fault detector recognizes that failure

has occurred at that grid component. It then

implements appropriate measures dictated by the

predefined fault tolerance mechanism. In contrast, in

the pull model the failure detector sends liveliness

requests (“Are you alive?” messages) periodically to

grid components[8].

2.3 Failure Detection Service (FDS)

Hwang et al. [9] presented a failure detection service (FDS)

and a flexible failure handling framework (Grid-WFS) as a

fault tolerance mechanism on the grid. The FDS enables the

detection of both task crashes and user defined exceptions.

Like any middleware, a grid middleware is also responsible to

hide, from the application developer, the technical details

related to different syntax and access methods and to provide a

consistent and homogeneous access to resources managed

locally.

Inderpreet Kaur
1 IJECS Volume 03 Issue 07 July,2014 Page No.6904-6908 Page 6906

2.4 Proactive Fault Tolerance

Mohammad et al. [10] use agents to inject proactive fault

tolerance in grids .Here autonomous, light-weight, intelligent

agents monitor with individual faults. Agents maintain log of

various information related to hardware conditions, memory

utilization, resource constraints, network status and component

failure. Based on this information and critical states, agent can

enhance the reliability and efficiency of grid services.

2.5. Rescheduling Approach

F. Berman, H. Casanova, and A. Chien presented a

rescheduling approach using stop and restart. The motivation

for rescheduling is similar to the one, rescheduling a job to a

better resource. However, a similar strategy can be adopted for

fault tolerance. In[11] when a running application is signaled to

migrate, it checkpoints user-specified data. For fault-tolerance,

instead of user-directed check pointing such as the one in [11],

an automatic check pointing approach has to be followed. In

automatic check pointing, the state of the program is saved

periodically to a persistent storage. When the machine running

the program crashes, the program can be rescheduled to run on

a different machine, continuing from the last check pointed

state.

2.6. Distributed Fault-Tolerant Scheduling (DFTS)

Distributed Fault-Tolerant Scheduling (DFTS) [12] policy is

based on the job replication mechanism. It does not reschedule

the job when a fault occurs. Instead it schedules more than one

copy of the job (called replicas) to a different set of resources.

The job is considered complete if one of the set of resources

successfully executed the complete job. The underlying

assumption for job replication is that in a grid many resources

may be underutilized.

2.7. FPLT ALGORITHM

D.Saha et.al[13] describes the FPLT algorithm in which the

scheduler sorts the node and task information by each node's

CPU speed and task's workload in order to reduce complexity

for searching the fastest node and the largest task all the time.

Then the scheduler assigns the largest task of the waiting tasks

to the available fastest node. FPLTF will reduce to the same as

Work queue when the tasks arrive one by one.

2.8. MFTF ALGORITHM

Wang et.al [14] in their MFTF algorithm declares the fitness

between the task and the node based of the expected execution

time and execution time of the node. The node which has much

less difference is expected to be the fittest node and the task is

allocated to it. The fitness definition seems to be arbitrary.

2.9. TASK DUPLICATION BASED SCHEDULING

ALGORITHM (TANH)

Bajaj and Aggarwal [15] proposed an algorithm TANH (Task

duplication-based scheduling Algorithm for Network of

Heterogeneous systems) in which a new parameter is

introduced for each task: the favorite processor (fp), which can

complete the task earliest. Other parameters of a task are

computed based on the value of fp. In the clustering step, the

initial task of a cluster is assigned to its first fp, and if the first

fp has already been assigned, then to the second and so on.

Duplication based algorithms are very useful in Grid

environments. The computational Grid usually has abundant

computational resources (recall that the number of resource is

unbounded in some duplication algorithms), but high

communication cost. This will make task duplication very cost

effective.

3 Proposed Work

As the most fitting resource algorithm (MFRS) [1] proposed

the closeness factor which describes the appropriateness of the

resource with the job requirements. The scheduling algorithm

schedules the job to the appropriate resource rather the best

performing resource. In the MFRS [1] algorithm the resources

are categorized into L discrete levels. The literature entire

resource is divided into ten levels and the fittest resources are

allocated to the nodes from these levels.

In this paper two parameters energy consumption and CPU

utilization. When work load increases then the chances for the

node failure increases. So once the node fails the jobs allocated

to that node fails. If a node fails then we can’t be sure that the

Gridlet submitted to that particular node will execute

successfully. This problem will lead to the wastage of time as

well as the resource and due to the average waiting time for the

Gridlet.

The tasks that are handled by the crashed node will be

replicated and new Gridlets ensures that the Job will be

executed successfully. This will reduce the risk of job failure

also.

When node will take job beyond its limit or energy

consumption increases, work load will increasing rapidly that

will create the chances of node crash. In any case, if any nodes

break down occurs, then analyse the node. Every node will be

having job assigned and shall be working independently in a

connected grid network. The fault tolerance will behave as a

non disturbing element. These factors will not affect the whole

computational grid environment of the system.

The fault tolerance testing for crash and omission transient

failure can be defined through the data flow diagram as below.

Inderpreet Kaur
1 IJECS Volume 03 Issue 07 July,2014 Page No.6904-6908 Page 6907

Figure 2: Data Flow Diagram for Fault Tolerance Testing of

Crash Failure

3.1 Algorithm

Step 1: The Task Ti is submitted for scheduling and assigned

task to the node having minimum job.

Step 2: Then task will replicate to the next node at the same

level and data will store in the database of all the nodes

assigned.

Step 3: Number of iterations are performed consecutively on

each node.

Step 4: If energy consumption of node increases.

Step 5: Crash occurs and identify the crashed node.

Step 6: Generate the message that task will replicate to the

next node at the same level.

Step 7: Else execute job processes

Step 8: Exit

4 CONCLUSION

In the grid environment the resources are heterogeneous and

highly distributed. Hence they are prone to failures. Any

scheduling algorithm will be more effective if fault tolerance is

taken into account. The fault tolerant most fitting resource

scheduling was implemented in a java based grid simulator and

the results are evaluated and concluded that with fault

tolerance feature added to the scheduling algorithm. Crash and

omission transient failure is detected and using replication

technique job assigned to the next node. At the end of proposed

work, our scope would be to test the time taken to resolve

crash and omission transient failure.

References

[1] Ian Foster and Carl Kesselman, S.T., (2001) “The Anatomy

of the Grid: Enabling Scalable

Virtual Organizations”, Intl J. Supercomputer Applications, 15:

200-222.

[2] Felipe Pontes Guimaraes and Alba Cristina Magalhaes

Alves de Melo, “User-Defined Adaptive Fault-Tolerant

Execution of Workflows in the Grid,” 11th IEEE International

Conference on Computer and Information Technology, 2011,

IEEE Computer Society, pp.356-362.

[3] Shen et al, “System design and implementation of digital-

image processing using computational grids”, Computers &

Geosciences, volume 31, Issue 5, pp: 619-630

[4] Arindam Da, Ajanta De Sarkar, “On fault tolerance of

resources in computational grids”, International Journal of Grid

Computing & Applications (IJGCA) Vol.3, No.3, September

2012

[5] Ruay-Shiung Chang, Chun-Fu Lin, Jen-Jom

Chen,“Selecting the most fitting resource for task execution”

Future Generation Computer Systems, Volume 27, Issue 2,

February 2011, Pages 227-231

 [6] Oliner, A.J., Sahoo, R.K., Moreira, J.E., Gupta, M.:

“Performance Implications of Periodic Check pointing on

Large-Scale Cluster Systems”, In Proceedings of the 19th

IEEE International Parallel and Distributed Processing

Symposium, Washington, 2005.

 [7] R. Medeiros, W. Cirne, F. Brasileiro, J. Sauve, “Faults in

grids: why are they so bad and what can be done about it?” In

proceedings of the 4th international workshop, November

2003, pp 18–24.

[8] Y. Li, Z. Lan, “Exploit failure prediction for adaptive fault-

tolerance in cluster”.In: Proceedings of the sixth IEEE

International symposium on cluster computing and the grid,

Vol 1, May 2006, pp.531-538.

 [9] S. Hwang and C. Kesselman, “A Generic Failure Detection

Service for the Grid”, Technical Report ISI-TR-568, USC

Information Sciences Institute, 2003.

 [10] Mohammad Tanvir Huda, Heinz W. Schmidt, Ian D.

Peake, "An Agent Oriented Proactive Fault-Tolerant

Framework for Grid Computing", In Proceedings of the First

International Conference on e-Science and Grid Computing,

2005, pp.304-311.

Inderpreet Kaur
1 IJECS Volume 03 Issue 07 July,2014 Page No.6904-6908 Page 6908

 [11] F. Berman, H. Casanova, and A. Chien. New grid

scheduling and rescheduling methods in the GrADS project.

International Journal of Parallel Programming, 33(2–3):209–

229, June 2005

[12] Jemal H. Abawajy. Fault-tolerant scheduling policy for

grid computing systems. In Proceedings of 18th International

Parallel and Distributed Processing Symposium, volume 14,

page 238, April 2004.

[13] D. Saha, D. Menasce, S. Porto, et al., “Static and dynamic

processor scheduling disciplines in heterogeneous parallel

architectures”, Journal of Parallel and Distributed Computing

28 (1)(1995) 1–18.

 [14] S. Wang, I. Hsu, Z. Huang , “Dynamic scheduling

method for computational grid Environments” , in:

Proceedings of the International Conference on Parallel and

Distributed Systems, July 2005, pp. 22–28.

[15] S. Ranaweera and D. P. Agrawal, “A Task Duplication

Based Scheduling Algorithm for Heterogeneous Systems”, in

Proc. of 14th International Parallel and Distributed

Processing Symposium (IPDPS'00), pp. 445-450, Cancun,

Mexico, May 2000.

Author profile

Inderpreet Kaur is a M.Tech. student in the Department of computer

science and engineering at Sri Guru Granth Sahib World University

of Fatehgarh Sahib, Punjab, India. She received the B.Tech. degree in

information technology from Banda Singh Bahadur Engineering

College of Fatehgarh Sahib in 2012. Her research interests include

grid computing.

Sarpreet Singh received his B.Tech degree in Computer Science

from Sant Longowal Institute of Engineering and Technology(SLIET)

of Punjab in 2006, M.Tech degree in Computer Science from Punjabi

University Patiala of Punjab in 2009. He is a Assistant Professor of

Computer Engineering at Sri Guru Granth Sahib World University,

Fatehgarh Sahib now. His research interests include Grid computing,

Distributed databases design concepts and knowledge management.

