

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 6 June, 2014 Page No. 6615-6619

Shreya Sharma
1
 IJECS Volume 3 Issue 6, June, 2014, Page No.6615-6614 Page 6615

Critical Analysis of Various Parallel Scheduling

Algorithms

Shreya Sharma
1

1Department of Computer Science, Guru Nanak Dev University,

Amritsar, India

Er.shreyasharma@gmail.com

Abstract – In this paper, we have discussed various parallel scheduling algorithms and there drawbacks. Out of static scheduling

algorithms the Dynamic Critical Path (DCP) Algorithm is the best algorithm. It has an admissible time complexity, is economical in terms

of the number of processors used and is suitable for a wide range of graph structures. But multiprocessor scheduling problem is NP-

complete in nature even with simplifying assumptions, and becomes more complex under relaxed assumptions such as arbitrary precedence

constraints, and arbitrary task execution and communication times. Therefore, a Genetic approach based algorithm was proposed with an

objective to simultaneously meet the goals of high performance, scalability, and fast running time known as Parallel Genetic Scheduling

(PGS) algorithm. And even outperforms DCP algorithm best known in terms of performance and time complexity.

Keywords: Parallel scheduling algorithms, Genetic Algorithms, Multiprocessor scheduling problem, DCP, PGS.

1. Introduction

Processing of multiple tasks simultaneously on multiple

processors is called parallel processing. These parallel

programs consist of multiple active simultaneously solving a

given problem. This given task is divided into multiple

subtasks using divide-and-conquer technique and each one of

them is processed on different CPUs and therefore is known as

parallel processing.

Perhaps, [6] the most crucial component of efficient parallel

processing system is the scheduling and allocation of the

modules of a parallel program to the processors. Because its

modules must be properly arranged in time and space in order

to optimize the performance. Given a parallel program

represented by a task graph, where the nodes represent the

tasks and the edges represent the communication costs and

precedence constraints among the tasks, a scheduling algorithm

determines the execution order of tasks and a mapping

algorithm determines the allocation of these tasks to

processors.

The task scheduling problem can be best represented as a

weighted Directed Acyclic Graph (DAG). In this DAG, a node

or vertex represents a task, and the directed edge shows the

dependency between two tasks. The basic aim of task

scheduling is to schedule tasks onto processors and minimize

the makespan of the schedule i.e. the finishing time of the last

task relative to the beginning time of the first task i.e. to

minimize the execution time. This is equivalent to

maximization of the speedup which is defined as the time

required for sequential execution divided by the time required

for parallel execution.

1.1 Classification of Dag Scheduling Algorithms
Static DAG scheduling problems are still working with major

changes in the model graph and machines. In general, the

parallel programs come in a variety of structures, and the

number of such algorithms has recently been designed to deal

with the arbitrary graphs.

These algorithms can be further divided into two categories:

The algorithms which consider computational cost of all tasks

as uniform, while others have arbitrary value. Some of the

algorithms have Intertask communication value equal to zero,

that is, there is precedence in the graph but without cost.

Scheduling can be done with or without task duplication.

The main aim of the Task duplication based (TDB)

scheduling algorithms is to reduce the communication

overhead by allocating redundant nodes to multiple processors.

In this different strategies can be used to select parent nodes for

duplication.

Non-TDB algorithms assuming arbitrary task graphs with

arbitrary costs on the nodes and edges can be divided into two

categories; some scheduling algorithms assume the availability

of an unlimited number of processors, while other algorithms

assume a limited number of processors. And are named as UNC

(unlimited groups) scheduling algorithm and BNP (limited

number of processors) scheduling algorithm respectively, in

both classes of algorithms, processors are assumed to be fully

connected and no attention is given to linking strategies

contention or routing used for communication. The technique

used by the UNC algorithms is also called clustering. At the

beginning of the programming process, each node is considered

as a group. In the following steps, two groups are merged if the

merger reduces the completion time. This procedure continues

until the merger cluster can be merged. The reasoning behind

Shreya Sharma
1
 IJECS Volume 3 Issue 6, June, 2014, Page No.6615-6614 Page 6616

UNC algorithms is that they can take advantage of using

multiple processors to further reduce the length of the schedule.

However , the groups generated by the UNC may need a post-

processing step to match the groups of processors as the

number of available processors may be less than the number of

bunches .

Some algorithms have been designed to reflect the more

general model in which the system is supposed to consist of an

arbitrary network topology, whose links are not without

contention. These algorithms are called APN (arbitrary

processor network) scheduling algorithms. They also schedule

messages on the network communication links.

2. Dynamic Critical Path Scheduling Algorithm
Yu-Kwong Kwok and lshfaq Ahmad (1996) [5] proposed a

static scheduling algorithm for allocating task graphs to fully

connected multiprocessors under the UNC category. In this a

graph with n number of nodes are scheduled where w(ni) is the

computation cost on node ni and cij is the communication cost

of edge between ni and nj. The dynamic critical path

length(DCPL) is calculated in the end by keeping the account

of the schedule length at each step i(SLi). In this it is stated

that the scheduling process proceeds, the CP can change

dynamically. That is, a node on a CP at one step may not be on

the CP at the next step. This is because the communication

costs among nodes may be changed to zero if the nodes are

scheduled to the same processor. The intermediate scheduling

step CP is known as dynamic critical path (DCP).

Essentially, the DCP algorithm examines a node ni for

scheduling if, among all nodes, ni has the smallest difference

between its ALST (Absolute- Latest-Start-Time) and AEST

(Absolute-Earliest-Start-Time).

The AEST values can be computed by traversing the task graph

in a breadth-first manner beginning from the entry nodes so that

when is to be computed, all the AEST values of ni’s parent

nodes are available. The AEST of ni is then simply the latest

data arrival time among all its parent nodes. But the

communication among two nodes is taken to be zero if they are

in the same processor. Therefore, absolute earliest start time of

a node n, in a processor J, denoted by AEST (n,, J) is

recursively defined as follows:

Similar to the computation of the AEST values, the values of

the ALST can also be computed by traversing the task graph in

a breadth-first manner but in the reverse direction i.e. bottom

up. ALST value is computed after the DCPL has been

computed and is as follows:

where ni has q children nodes and is the m

th
 child node.

if it is an exit node. The value of difference between the AEST

and ALST is equivalent to the value of the node’s mobility,

defined as:

The DCP algorithm uses a look ahead strategy to find a better

cluster for a given node.

Figure 1: Working of DCP Algorithm

The time-complexity of the DCP algorithm is O (v
3
). Since the

DCP algorithm examines the first unscheduled node on the

current critical path by using mobility measures, it constructs

optimal solutions for fork and joins graph structures.

DCP algorithm is different from the others in the following

sense [9]:

 It assigns dynamic priorities to nodes at each step based on

the dynamic critical path (defined below) so that the

schedule length reduces monotonically.

 It changes the schedule on each processor dynamically in

that the start times of nodes are not fixed until all nodes

have been considered.

 It uses an intelligent way [9] to select suitable processor for

a node by “looking ahead” the potential start time of the

critical child node on that processor.

 It schedules relatively unimportant nodes to the processors

already in use in order not to overuse processors.

3. Genetic Algorithm
Multiprocessor task scheduling is an NP-hard optimization

problem, as the time needed to solve it optimally grows

exponentially with the number of tasks and there exist no

algorithms for finding an optimal solution in polynomial time.

And it becomes more complex under relaxed assumptions such

as arbitrary precedence constraints, and arbitrary task execution

and communication times. As finding the best way to maximize

efficiency in task scheduling process can be extremely

complex. Even for a single program there are multiple tasks &

constraints and limited number of resources. Therefore,

Genetic algorithm is used to which tries to find an optimal

solution because unlike heuristic methods genetic algorithm

Shreya Sharma
1
 IJECS Volume 3 Issue 6, June, 2014, Page No.6615-6614 Page 6617

operate on a population of solutions rather than a single

solution.

Genetic algorithms (GAs) [10] are adaptive procedures derived

from Darwin’s principal of survival of the fittest in natural

genetics. In searching a large state-space, multi-model state-

space, or n-dimensional surface, [3] a genetic algorithm may

offer significant benefits over more typical search of

optimization techniques.

GA’s are general-purpose, stochastic search methods that use

the principles inspired by natural selection and genetics (i.e.,

crossover, mutation). Each point in the well-defined search

space of a given problem is called chromosomes. A GA

operated by iteratively generating a population of

chromosomes that are encoded of the candidate solutions. The

quality of the solution represented by a chromosome is

evaluated with a function called fitness. The fitness of each

chromosome is a measurement of performance of the design

variables as defined by the objective function and the

constraints of the problem. GAs use global search techniques to

explore different regions of the search space simultaneously by

keeping track of a set of potential solutions of diverse

characteristics. Gas has been widely used for the scheduling

problem in number of ways showing the potential of using this

class of algorithms for scheduling. Implementation of a genetic

algorithm is shown in the following flowchart

3.1 Genetic Operators

 Selection Operator: generates a new population of

chromosomes by selecting chromosomes from the old

population based on their fitness scores. The selection

criterion is that chromosomes with higher fitness score should

have a higher probability of surviving to the next generation.

 Crossover Operator: is a genetic operator used to diverge the

encoding of a chromosome or chromosomes from one

iteration to the next. Crossover generates new individuals that

have some segments of both parent's genetic objects.

 Mutation Operator: is a GA operator that modifies one or

more gene values in an individual/ chromosome from its

preliminary shape. The result of this modification can be

entirely new gene values being added to the gene group. The

genetic algorithm may be capable to reach at better solution

with these new gene values. Mutation is a vital operator of

the genetic search as it prevents the population from being

idle at any local optima.

4. Parallel Genetic Scheduling (PGS):
Kwok[7] presented a parallel genetic algorithm, called the PGS

algorithm, for multiprocessor DAG scheduling. And used this

approach so that the re-combinative nature of a genetic

algorithm can potentially be determined and an optimal

scheduling list leads to an optimal schedule.

Parallelization of the algorithm is based on a approach in which

the parallel processors Np communicate to exchange the best

chromosomes with exponentially decreasing periods. And, the

parallel processors perform exploration of the solution-space at

the early stages and exploitation at the later stages.

Figure 2: Working of PGS Algorithm

In his experimental studies, he found that the PGS algorithm

generates optimal solutions for more than half of all the cases

in which random task graphs were used. In addition, the PGS

algorithm demonstrates an almost linear speedup and is

therefore scalable.

While the DCP algorithm has already been shown to

outperform many of the leading algorithms, the PGS algorithm

is even better since it generates solutions with comparable

quality while using significantly less time due to its effective

parallelization. An extra advantage of the PGS algorithm is its

scalability, and with the use of more parallel processors, the

algorithm can also be used for scheduling large task graphs.

Although the PGS algorithm has shown encouraging

performance, further improvements are possible if an optimal

set of control parameters, including crossover rate, mutation

rate, population size, number of generations, and number of

parallel processors used could be determined which is an open

research problem.

4.1 Experimental Results

Kwok [7] has compared PGS algorithm with the DCP

algorithm. The results in case of Gaussian elimination task

graphs are shown in table 1 and revealed that the performance

of both algorithms was somewhat similar form more than half

of the cases.

Table 1: Avg. Ratios of the schedule lengths generated by the

PGS algorithm to that of the DCP algorithm for the Gaussian

Shreya Sharma
1
 IJECS Volume 3 Issue 6, June, 2014, Page No.6615-6614 Page 6618

elimination task graphs (matrix size ranges from 9 to 18) with

three CCRs using 2, 4, 8, and 16 PPEs

CCR 0.1 1.0 10.0

No. of PPEs Avg. Ratio

2 0.97 1.01 1.01

4 1.00 1.02 1.01

8 0.98 0.99 1.03

16 1.01 0.97 1.05

Figure 3: Graphical Illustration of Table 1

The results for the LU- decomposition task graphs are shown in

table 2. In this case DCP outperformed the PGS algorithm by

producing better schedule lengths. But the reason behind this

could be that LU- decomposition task graphs have multiple

critical paths, therefore minimization of schedule length is

difficult.

Table 2: Avg. Ratios of the schedule lengths generated by the

PGS algorithm to that of the DCP algorithm for the LU-

decomposition task graphs (matrix size ranges from 9 to 18)

with three CCRs using 2, 4, 8, and 16 PPEs

CCR 0.1 1.0 10.0

No. of PPEs Avg. Ratio

2 1.05 1.05 1.15

4 1.05 1.07 1.10

8 1.03 1.05 1.03

16 1.04 1.03 1.10

Figure 4: Graphical Illustration of Table 2

The results for the Laplace equation solver task graphs are

shown in table 3. In this case also the overall performance of

DCP was better than PGS because all the paths in a Laplace

equation solver task graph are critical paths. But the average

difference in schedule length is not much.

Table 3: Avg. Ratios of the schedule lengths generated by the

PGS algorithm to that of the DCP algorithm for the Laplace

equation solver task graphs (matrix size ranges from 9 to 18)

with three CCRs using 2, 4, 8, and 16 PPEs

CCR 0.1 1.0 10.0

No. of PPEs Avg. Ratio

2 1.05 1.21 1.18

4 1.14 1.20 1.20

8 1.10 1.21 1.12

16 1.11 1.12 1.15

Figure 4: Graphical Illustration of Table 3

From these three types of graphs the results indicate that the

performance of the PGS algorithm is comparable to that of

DCP algorithm. According to Kwok[7] the reason behind these

types of results could be the no. of generations. Therefore, he

varied the no. of generations for random type of graph and

concluded that PGS algorithm outperformed DCP algorithm for

all the smaller values of communication to computation ratio

(CCR) (ie. 0.1 and 1) as well as the higher values i.e. CCR=

10. And the PGS algorithm was faster than the DCP algorithm.

Following table shows the avg. running time of both the

algorithms.

 Table 4: Average running times using 1 PPE.

Matrix Size DCP PGS

9 5.17 6.17

10 5.55 6.15

11 6.73 8.73

12 7.92 9.92

13 9.63 11.63

14 12.43 13.43

15 16.34 18.34

16 19.32 20.32

17 23.89 25.89

18 28.25 30.25

Shreya Sharma
1
 IJECS Volume 3 Issue 6, June, 2014, Page No.6615-6614 Page 6619

Figure 6: Graphical Illustration of Table 4

5. Conclusion and Future Work

This paper has evaluated various parallel scheduling algorithms

and there shortcomings. Among the static scheduling

algorithms the Dynamic Critical Path algorithm outperforms

than the other algorithms and has an admissible time

complexity, is economical in terms of the number of processors

used and is suitable for a wide range of graph structures. But it

has been found that the multiprocessor scheduling problem is

NP-complete in nature even with simplifying assumptions. It is

also found to be more complex under relaxed assumptions such

as arbitrary precedence constraints, and arbitrary task execution

and communication times. Therefore, a Genetic approach based

algorithm has been used with an objective to simultaneously

meet the goals of high performance, scalability, and fast

running time known as Parallel Genetic Scheduling algorithm.

It has outperformed than DCP algorithm to evaluate best

known in terms of performance and time complexity.

In near future the use of Particle swarm optimization based

evolutionary algorithms will be done to enhance the results

further. However scalability of the processors and the jobs is

also neglected in this research work in near future the

scalability issues will also be considered.

References

[1] Yi-wen Zhongiz and Jian-gang Yang,“A genetic algorithm

for tasks scheduling in parallel Multiprocessor

systems”,proceedings of the second international

conference on machine learning and cybernetics, 2003

[2] Min-You Wu , Ishfaq Ahmad and Yu-Kwong Kwok,

“Analysis, Evaluation, and Comparison of Algorithms

for Scheduling Task Graphs on Parallel Processors”,

1996

[3] R Sivaraj “A review of selection methods in genetic

algorithm”, IJEST, May 5, 2011

[4] Yu-Kwong Kwok and Ishfaq Ahmad, “Benchmarking and

Comparison of the Task Graph Scheduling Algorithms”,

1999

[5] Yu-Kwong Kwok and lshfaq Ahmad “Dynamic Critical

Path Scheduling: An effective technique for allocating

task graphs to multiprocessors”, , IEEE transaction on

parallel and distributed system , Vol. 7, No. 5, May 1996

[6] Yu-Kwong Kwok “Efficient Algorithms for Scheduling

and Mapping of Parallel Programs onto Parallel

Architectures”, 1994

[7] Yu-Kwong Kwok and Ishfaq Ahmad, “Efficient

Scheduling of Arbitrary Task Graphs to Multiprocessors

using A Parallel Genetic Algorithm”, Journal of Parallel

and Distributed Computing, July 1997

[8] Min-You Wu, “Efficient Local Search for DAG

Scheduling”, Senior Member, IEEE, June 2001

[9] YK Kwok, “Static scheduling algorithms for allocating

directed task graphs to multiprocessors”, IEEE, 1999.

[10] David E. Goldberg, “Genetic Algorithms in search

optimization and machine learning”, published by

Pearson Education, 2004

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDcQFjAB&url=http%3A%2F%2Fwww.ijest.info%2Fdocs%2FIJEST11-03-05-190.pdf&ei=k8OBU4XdOZLJuAS0r4C4DA&usg=AFQjCNFcKTcd1mRGvpAxvv4_-gS3pib4bg&sig2=MUzQLMYNCkwDavW851fa9g
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CDcQFjAB&url=http%3A%2F%2Fwww.ijest.info%2Fdocs%2FIJEST11-03-05-190.pdf&ei=k8OBU4XdOZLJuAS0r4C4DA&usg=AFQjCNFcKTcd1mRGvpAxvv4_-gS3pib4bg&sig2=MUzQLMYNCkwDavW851fa9g

