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Abstract – In this paper, we have discussed various parallel scheduling algorithms and there drawbacks. Out of static scheduling 

algorithms the Dynamic Critical Path (DCP) Algorithm is the best algorithm. It has an admissible time complexity, is economical in terms 

of the number of processors used and is suitable for a wide range of graph structures. But multiprocessor scheduling problem is NP-

complete in nature even with simplifying assumptions, and becomes more complex under relaxed assumptions such as arbitrary precedence 

constraints, and arbitrary task execution and communication times. Therefore, a Genetic approach based algorithm was proposed with an 

objective to simultaneously meet the goals of high performance, scalability, and fast running time known as Parallel Genetic Scheduling 

(PGS) algorithm. And even outperforms DCP algorithm best known in terms of performance and time complexity. 
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1. Introduction 

Processing of multiple tasks simultaneously on multiple 

processors is called parallel processing. These parallel 

programs consist of multiple active simultaneously solving a 

given problem. This given task is divided into multiple 

subtasks using divide-and-conquer technique and each one of 

them is processed on different CPUs and therefore is known as 

parallel processing. 

  

Perhaps, [6] the most crucial component of efficient parallel 

processing system is the scheduling and allocation of the 

modules of a parallel program to the processors. Because its 

modules must be properly arranged in time and space in order 

to optimize the performance. Given a parallel program 

represented by a task graph, where the nodes represent the 

tasks and the edges represent the communication costs and 

precedence constraints among the tasks, a scheduling algorithm 

determines the execution order of tasks and a mapping 

algorithm determines the allocation of these tasks to 

processors. 

The task scheduling problem can be best represented as a 

weighted Directed Acyclic Graph (DAG). In this DAG, a node 

or vertex represents a task, and the directed edge shows the 

dependency between two tasks. The basic aim of task 

scheduling is to schedule tasks onto processors and minimize 

the makespan of the schedule i.e. the finishing time of the last 

task relative to the beginning time of the first task i.e. to 

minimize the execution time. This is equivalent to 

maximization of the speedup which is defined as the time 

required for sequential execution divided by the time required 

for parallel execution. 

 

1.1 Classification of Dag Scheduling Algorithms 
Static DAG scheduling problems are still working with major 

changes in the model graph and machines. In general, the 

parallel programs come in a variety of structures, and the 

number of such algorithms has recently been designed to deal 

with the arbitrary graphs. 

These algorithms can be further divided into two categories: 

The algorithms which consider computational cost of all tasks 

as uniform, while others have arbitrary value. Some of the 

algorithms have Intertask communication value equal to zero, 

that is, there is precedence in the graph but without cost. 

Scheduling can be done with or without task duplication. 

The main aim of the Task duplication based ( TDB ) 

scheduling algorithms is to reduce the communication 

overhead by allocating redundant nodes to multiple processors. 

In this different strategies can be used to select parent nodes for 

duplication. 

Non-TDB algorithms assuming arbitrary task graphs with 

arbitrary costs on the nodes and edges can be divided into two 

categories; some scheduling algorithms assume the availability 

of an unlimited number of processors, while other algorithms 

assume a limited number of processors. And are named as UNC 

(unlimited groups) scheduling algorithm and BNP (limited 

number of processors) scheduling algorithm respectively, in 

both classes of algorithms, processors are assumed to be fully 

connected and no attention is given to linking strategies 

contention or routing used for communication. The technique 

used by the UNC algorithms is also called clustering. At the 

beginning of the programming process, each node is considered 

as a group. In the following steps, two groups are merged if the 

merger reduces the completion time. This procedure continues 

until the merger cluster can be merged. The reasoning behind 
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UNC algorithms is that they can take advantage of using 

multiple processors to further reduce the length of the schedule. 

However , the groups generated by the UNC may need a post-

processing step to match the groups of processors as the 

number of available processors may be less than the number of 

bunches . 

Some algorithms have been designed to reflect the more 

general model in which the system is supposed to consist of an 

arbitrary network topology, whose links are not without 

contention. These algorithms are called APN (arbitrary 

processor network) scheduling algorithms. They also schedule 

messages on the network communication links. 

 

2. Dynamic Critical Path Scheduling Algorithm 
Yu-Kwong Kwok and lshfaq Ahmad (1996) [5] proposed a 

static scheduling algorithm for allocating task graphs to fully 

connected multiprocessors under the UNC category. In this a 

graph with n number of nodes are scheduled where w(ni) is the 

computation cost on node ni and cij is the communication cost 

of edge between ni and nj. The dynamic critical path 

length(DCPL) is calculated in the end by keeping the account 

of  the schedule length at each step i(SLi).   In this it is stated 

that the scheduling process proceeds, the CP can change 

dynamically. That is, a node on a CP at one step may not be on 

the CP at the next step. This is because the communication 

costs among nodes may be changed to zero if the nodes are 

scheduled to the same processor. The intermediate scheduling 

step CP is known as dynamic critical path (DCP).   

Essentially, the DCP algorithm examines a node ni for 

scheduling if, among all nodes, ni has the smallest difference 

between its ALST (Absolute- Latest-Start-Time) and AEST 

(Absolute-Earliest-Start-Time).  

The AEST values can be computed by traversing the task graph 

in a breadth-first manner beginning from the entry nodes so that 

when is to be computed, all the AEST values of ni’s parent 

nodes are available. The AEST of ni is then simply the latest 

data arrival time among all its parent nodes. But the 

communication among two nodes is taken to be zero if they are 

in the same processor. Therefore, absolute earliest start time of 

a node n, in a processor J, denoted by AEST (n,, J) is 

recursively defined as follows: 

   

Similar to the computation of the AEST values, the values of 

the ALST can also be computed by traversing the task graph in 

a breadth-first manner but in the reverse direction i.e. bottom 

up. ALST value is computed after the DCPL has been 

computed and is as follows: 

 
where ni  has q children nodes and  is the m

th
 child node. 

 
if it is an exit node. The value of difference between the AEST 

and ALST  is equivalent to the value of the node’s mobility, 

defined as:  

 
The DCP algorithm uses a look ahead strategy to find a better 

cluster for a given node.  

 

 
Figure 1: Working of DCP Algorithm 

The time-complexity of the DCP algorithm is O (v
3
). Since the 

DCP algorithm examines the first unscheduled node on the 

current critical path by using mobility measures, it constructs 

optimal solutions for fork and joins graph structures.  

DCP algorithm is different from the others in the following 

sense [9]: 

 It assigns dynamic priorities to nodes at each step based on 

the dynamic critical path (defined below) so that the 

schedule length reduces monotonically. 

 It changes the schedule on each processor dynamically in 

that the start times of nodes are not fixed until all nodes 

have been considered. 

 It uses an intelligent way [9] to select suitable processor for 

a node by “looking ahead” the potential start time of the 

critical child node on that processor. 

 It schedules relatively unimportant nodes to the processors 

already in use in order not to overuse processors. 

 

3. Genetic Algorithm 
Multiprocessor task scheduling is an NP-hard optimization 

problem, as the time needed to solve it optimally grows 

exponentially with the number of tasks and there exist no 

algorithms for finding an optimal solution in polynomial time. 

And it becomes more complex under relaxed assumptions such 

as arbitrary precedence constraints, and arbitrary task execution 

and communication times. As finding the best way to maximize 

efficiency in task scheduling process can be extremely 

complex. Even for a single program there are multiple tasks & 

constraints and limited number of resources. Therefore, 

Genetic algorithm is used to which tries to find an optimal 

solution because unlike heuristic methods genetic algorithm 
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operate on a population of solutions rather than a single 

solution. 

 

Genetic algorithms (GAs) [10] are adaptive procedures derived 

from Darwin’s principal of survival of the fittest in natural 

genetics. In searching a large state-space, multi-model state-

space, or n-dimensional surface, [3] a genetic algorithm may 

offer significant benefits over more typical search of 

optimization techniques. 

GA’s are general-purpose, stochastic search methods that use 

the principles inspired by natural selection and genetics (i.e., 

crossover, mutation). Each point in the well-defined search 

space of a given problem is called chromosomes. A GA 

operated by iteratively generating a population of 

chromosomes that are encoded of the candidate solutions. The 

quality of the solution represented by a chromosome is 

evaluated with a function called fitness. The fitness of each 

chromosome is a measurement of performance of the design 

variables as defined by the objective function and the 

constraints of the problem. GAs use global search techniques to 

explore different regions of the search space simultaneously by 

keeping track of a set of potential solutions of diverse 

characteristics. Gas has been widely used for the scheduling 

problem in number of ways showing the potential of using this 

class of algorithms for scheduling. Implementation of a genetic 

algorithm is shown in the following flowchart  

 

3.1 Genetic Operators 

 Selection Operator: generates a new population of 

chromosomes by selecting chromosomes from the old 

population based on their fitness scores. The selection 

criterion is that chromosomes with higher fitness score should 

have a higher probability of surviving to the next generation. 

 Crossover Operator: is a genetic operator used to diverge the 

encoding of a chromosome or chromosomes from one 

iteration to the next. Crossover generates new individuals that 

have some segments of both parent's genetic objects. 

 Mutation Operator: is a GA operator that modifies one or 

more gene values in an individual/ chromosome from its 

preliminary shape. The result of this modification can be 

entirely new gene values being added to the gene group. The 

genetic algorithm may be capable to reach at better solution 

with these new gene values. Mutation is a vital operator of 

the genetic search as it prevents the population from being 

idle at any local optima. 

 

4. Parallel Genetic Scheduling (PGS): 
Kwok[7] presented a parallel genetic algorithm, called the PGS 

algorithm, for multiprocessor DAG scheduling. And used this 

approach so that the re-combinative nature of a genetic 

algorithm can potentially be determined and an optimal 

scheduling list leads to an optimal schedule.  

Parallelization of the algorithm is based on a approach in which 

the parallel processors Np communicate to exchange the best 

chromosomes with exponentially decreasing periods. And, the 

parallel processors perform exploration of the solution-space at 

the early stages and exploitation at the later stages. 

 
Figure 2: Working of PGS Algorithm 

 

In his experimental studies, he found that the PGS algorithm 

generates optimal solutions for more than half of all the cases 

in which random task graphs were used. In addition, the PGS 

algorithm demonstrates an almost linear speedup and is 

therefore scalable. 

While the DCP algorithm has already been shown to 

outperform many of the leading algorithms, the PGS algorithm 

is even better since it generates solutions with comparable 

quality while using significantly less time due to its effective 

parallelization. An extra advantage of the PGS algorithm is its 

scalability, and with the use of more parallel processors, the 

algorithm can also be used for scheduling large task graphs. 

Although the PGS algorithm has shown encouraging 

performance, further improvements are possible if an optimal 

set of control parameters, including crossover rate, mutation 

rate, population size, number of generations, and number of 

parallel processors used could be determined which is an open 

research problem. 

 

4.1 Experimental Results 

Kwok [7] has compared PGS algorithm with the DCP 

algorithm. The results in case of Gaussian elimination task 

graphs are shown in table 1 and revealed that the performance 

of both algorithms was somewhat similar form more than half 

of the cases. 

 

Table 1: Avg. Ratios of the schedule lengths generated by the 

PGS algorithm to that of the DCP algorithm for the Gaussian 
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elimination task graphs (matrix size ranges from 9 to 18) with 

three CCRs using 2, 4, 8, and 16 PPEs  

CCR 0.1 1.0 10.0 

No. of PPEs Avg. Ratio 

2 0.97 1.01 1.01 

4 1.00 1.02 1.01 

8 0.98 0.99 1.03 

16 1.01 0.97 1.05 

 

 
Figure 3: Graphical Illustration of Table 1 

 

The results for the LU- decomposition task graphs are shown in 

table 2.  In this case DCP outperformed the PGS algorithm by 

producing better schedule lengths. But the reason behind this 

could be that LU- decomposition task graphs have multiple 

critical paths, therefore minimization of schedule length is 

difficult. 

 

Table 2: Avg. Ratios of the schedule lengths generated by the 

PGS algorithm to that of the DCP algorithm for the LU- 

decomposition task graphs (matrix size ranges from 9 to 18) 

with three CCRs using 2, 4, 8, and 16 PPEs 

CCR 0.1 1.0 10.0 

No. of PPEs Avg. Ratio 

2 1.05 1.05 1.15 

4 1.05 1.07 1.10 

8 1.03 1.05 1.03 

16 1.04 1.03 1.10 

 

 

Figure 4: Graphical Illustration of Table 2 

The results for the Laplace equation solver task graphs are 

shown in table 3. In this case also the overall performance of 

DCP was better than PGS because all the paths in a Laplace 

equation solver task graph are critical paths. But the average 

difference in schedule length is not much.  

 

Table 3:  Avg. Ratios of the schedule lengths generated by the 

PGS algorithm to that of the DCP algorithm for the Laplace 

equation solver task graphs (matrix size ranges from 9 to 18) 

with three CCRs using 2, 4, 8, and 16 PPEs 

CCR 0.1 1.0 10.0 

No. of PPEs Avg. Ratio 

2 1.05 1.21 1.18 

4 1.14 1.20 1.20 

8 1.10 1.21 1.12 

16 1.11 1.12 1.15 

 

 
Figure 4: Graphical Illustration of Table 3 

 

From these three types of graphs the results indicate that the 

performance of the PGS algorithm is comparable to that of 

DCP algorithm. According to Kwok[7] the reason behind these 

types of results could be the no. of generations. Therefore, he 

varied the no. of generations   for random type of graph and 

concluded that PGS algorithm outperformed DCP algorithm for  

all the smaller values of communication to computation ratio 

(CCR) (ie. 0.1 and 1)  as well as the higher values i.e. CCR= 

10.  And the PGS algorithm was faster than the DCP algorithm.  

Following table shows the avg. running time of both the 

algorithms.  

 

 Table 4:  Average running times using 1 PPE. 

Matrix Size DCP PGS 

9 5.17 6.17 

10 5.55 6.15 

11 6.73 8.73 

12 7.92 9.92 

13 9.63 11.63 

14 12.43 13.43 

15 16.34 18.34 

16 19.32 20.32 

17 23.89 25.89 

18 28.25 30.25 
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Figure 6: Graphical Illustration of Table 4 

 

 

5. Conclusion and Future Work 

This paper has evaluated various parallel scheduling algorithms 

and there shortcomings. Among the static scheduling 

algorithms the Dynamic Critical Path algorithm outperforms 

than the other algorithms and has an admissible time 

complexity, is economical in terms of the number of processors 

used and is suitable for a wide range of graph structures. But it 

has been found that the multiprocessor scheduling problem is 

NP-complete in nature even with simplifying assumptions. It is 

also found to be more complex under relaxed assumptions such 

as arbitrary precedence constraints, and arbitrary task execution 

and communication times. Therefore, a Genetic approach based 

algorithm has been used with an objective to simultaneously 

meet the goals of high performance, scalability, and fast 

running time known as Parallel Genetic Scheduling algorithm. 

It has outperformed than DCP algorithm to evaluate best 

known in terms of performance and time complexity. 

In near future the use of Particle swarm optimization based 

evolutionary algorithms will be done to enhance the results 

further. However scalability of the processors and the jobs is 

also neglected in this research work in near future the 

scalability issues will also be considered. 
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