

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 6 June, 2014 Page No. 6578-6583

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6578

Design and implementation of High performance Bus

Architecture using FPGA

Muhammed Asharaf.T.P
1
, Manu Ramesh

2
, Sankarnarayana Bhat.M

3

1 Manipal University, Manipal Institute of Technology,

Manipal, udupi, 576104.

muhammedashru@gmail.com

21 Manipal University, Manipal Institute of Technology,

Manipal, udupi, 576104.

ramesh.manu0@gmail.com

3 Manipal University, Manipal Institute of Technology,

 Manipal, udupi, 576104.

msnbhat299@gmail.com

Abstract: In any system on chip (SoC) a reliable and optimized communication protocol is inevitable. In SoC communication high

performance, low power consumption and testability are essential. AMBA bus architecture is an SoC communication protocol that aims at

high performance and low power consumption by partitioning based on the bandwidth with which the devices operate, within the system. In

this paper we discuss about the design of two such buses AXI (Advanced Extensible Interface) and APB (Advanced Peripheral Bus) in a

four master four slave system. The whole design is simulated and implemented in FPGA.

Keywords: Advanced Microcontroller Bus Architecture (AMBA), System On Chip (SoC), Advanced Extensible Interface (AXI), Advanced

Peripheral Bus (APB).

1. Introduction

In the modern era of VLSI technology the computers depend

more on system on-chip communication (SoC) protocols for

data exchange [1]. In any SoC the communication standard

should be reliable. With the aim to deal with many off chip

communication issues Advanced RISC Machine (ARM)

introduced Advanced Microcontroller Bus Architecture

(AMBA) in 1996. AMBA defines both a bus specification and

a technology-independent methodology for designing,

implementing [2], and testing customized embedded

controllers. Introduction of AMBA buses by ARM made a

remarkable change in the existing communication scenarios. It

was a solution for many existing bottle necks like adhoc design

approach, infrastructure portability, centralized state machine

etc [3]. ARM has defined various bus specifications from 1996.

Broadly, such specifications address two types of busses:

system bus and peripheral bus [4]. In this paper we discuss two

main bus specification of AMBA bus (AXI 4 and APB 4) and

its communication between each other. Advanced Extensible

Interface (AXI) is main system bus for high speed operation

and Advanced peripheral Bus (APB) is the bus used for

connecting low bandwidth peripherals where high speed

performance is not required. In the design we have used four

masters which communicate with four slaves.

The masters operate on the AXI side. Slaves are APB Bridge

which forms the interface between the high speed AXI bus and

low bandwidth APB bus [5]. APB protocol is implemented in

the form of a controller which is connected to the bridge [6].

By partitioning high- and low-bandwidth devices within the

system, AMBA ensures energy-efficient designs, suitable for

low-power CPU cores.

The whole design is coded in Verilog and implemented in

FPGA.

2. AXI (Advanced Extensible interface)

ARM included AXI in 2010, which is a replacement for AHB

bus protocol. It’s also designed in a way to perform as

submicron interconnects. AXI having five independent

channels which work based on handshaking mechanism [10].

All these five channels support duplex operation.

2.1 AXI handshaking Mechanism

In AXI 4.0 specification, there are five independent channels

with corresponding handshake signals for every transaction.

The source needs to assert VALID when control information or

data is available and READY should be asserted by the

destination when it accepts the control information or data.

Transfer occurs only if both READY and VALID signals are

asserted. A VALID signals should be asserted before READY

signal gets asserted. In Figure 1 we can see all possibilities of

VALID/READY handshaking. The arrows in the Figure 1

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6579

show the occurrence of respective transactions. In AXI, the

source needs to sample the READY signal and is to be

declared as a register. Similarly, the destination needs to

sample the VALID signal. In case the READY and VALID

signals are not declared as register then the source and

destination will take one additional cycle for the next

transaction and leads to error signals [5] [10].

Figure 1: AXI handshaking

3. Advanced Peripheral Bus (APB)

APB bus deals with low power peripheral devices where high

performance is not required [6]. All the signal transitions are

occurring during the positive edge of the clock. APB is

designed for low power consumption. APB is a non- pipelined

protocol.

3.1 State Diagram

APB operation takes place through three states, namely Idle,

Setup and Enable as shown in Figure 2.

IDLE : The default state of the APB bus.

SETUP: The bus moves into the SETUP state when a transfer

is required. Here the appropriate select signal, PSEL, is

asserted. The SETUP state lasts for one clock cycle and will

always move to the ENABLE state on the next rising edge of

the clock.

ENABLE: Enable signal. PENABLE is asserted in this state.

During the transition from the SETUP to ENABLE state

address, write and select signals should remain stable. This

state also lasts for only one clock cycle but the transition from

this state to idle or setup depends on the requirement of a

transaction. If a transfer is required then the bus moves to setup

state otherwise goes to idle state [6].

Figure 2: APB state machine [5]

3.2 APB Transactions

 Figure 3 shows the timing diagram of write transfer of APB.

Figure 3: Write Operation

3.2.1 Write Operation

The state machine of the protocol can be understood from the

timing diagram of write transfer shown in Figure 3 above. The

first cycle T1 indicates the idle state where no transaction

takes place and no control signals are asserted. The write

operation starts in the cycle T2. Here all the signals except the

enable signal changes. This indicates the setup phase. During

T3 the enable control signal PENABLE is asserted which

shows the access phase. Actual transfer of the data takes place

in this cycle. All the signals are valid during the enable cycle.

The write transfer completes at the end of this cycle. The write

control signal PWRITE is asserted high during the write

transfer, which indicates that the operation is a write transfer.

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6580

Figure 4: Read Operation

3.2.2 Read Operation

Read operation on APB is very much similar to write

operation. The timing diagram is shown in Figure 4. The three

states of the state machine can be understood as in the case of

write operation. In this bus architecture, there is no read control

signal for peripherals [4]. The write control signal pwrite is

used for both write and read transfer. When it is a read transfer

pwrite is made low. Read transfer take place only after making

pwrite active low.

4. Design overview

Figure 5: Main block diagram

The overall design overview is shown in the Figure 5.The

design has mainly three sections the AXI part, the Bridge and

the APB portion. AXI is the system bus which supports the

high speed operation. In this paper the communication of AXI

is with the low bandwidth peripheral devices. This is done

through APB. For enabling this transaction we require a bridge.

AXI to APB Bridge make the signals which are used in AXI

side suitable to use in the APB side [6]. The signals shown in

Figure 5, are the AXI and APB signals required for the

transactions. Individual blocks are explained in the following

section.

4.1 AXI Module

Figure 6: AXI Master to slave connection

The Figure 6 shows the signal transaction between AXI master

and slave. Here we have designed 4 master and 4 slaves. Slaves

are bridges which will convert the AXI signals to

corresponding APB signals. The APB bridge acts as master in

APB module and all the transactions initiated by the AXI

masters. Whenever AXI master tries to access the slave, it

requires completing the handshaking process with the

corresponding slave. If two masters trying to access the same

slave, Master 0 will have the higher priority and Master 3 has

the least priority. If a master requests write and read operation

simultaneously then read will occur first then write transaction

will take place.

4.2 AXI Interconnect

In AXI, the interconnect is user defined. We designed the

interconnect using decoder and multiplexers. All the masters

are connected to all multiplexers. These multiplexers are

connected to corresponding slaves. The selection of the

multiplexers is decided by the decoder shown in Figure 7. The

decoder decides the multiplexer by decoding the read or write

address given by the ARADDR bus. Once any of the

multiplexer is enabled the data transfer takes place. Activated

multiplexer will send the data to the corresponding bridge.

Figure 7: AXI Interconnect

The bridge being the master of APB, sends or receives the data

to or from the peripheral devices.

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6581

4.3 Low Bandwidth Peripheral Controller:

Figure8: APB controller

In the design we have used AXI slave 0 as an APB bridge and

all the slave devices are connected to this bridge through a

controller and APB Bridge acts as the master. The overall

design module of AXI slave 0 is shown in the Figure 8. It

consists of an APB Controller, address decoder and the low

bandwidth peripheral devices. The slave devices include

UART, seven segment decoder and a keypad decoder.

Controller uses the APB protocol for the communication with

the slave devices. Whenever a write operation is required, the

controller will assert pwrite signal. For a read operation pwrite

is made low. There is no read control signal in the APB.

4.4 I/O Peripherals

In this work, three I/O devices were made use of, namely,

keypad decoder, Seven segment decoder and UART.

4.4.1 Address Decoder

The APB controller uses the address decoder for the selection

of slave devices. Based on the address received from the

bridge, over the address bus of APB (PADDR), address

decoder selects the appropriate slave. This is done by asserting

the corresponding PSEL signal. Once any of the PSEL signal is

asserted the controller grants the access to the master on the

AXI side which has placed request to the bridge for that

particular slave. When the master gets the access requested

slave, the required transaction can follow.

4.4.2 Keypad Decoder

It is yet another peripheral device used in the design. It is

selected by asserting psel1. It is an input device. A 3 X 3

keypad is used. Cn1, Cn2, Cn3 are the column lines and Rw1,

Rw2, Rw3 are the row lines. When a key is pressed the

algorithm will generate the value by according to the row and

column selected.

4.4.3 Seven Segment Decoder

The output device used is a seven segment display. It is

selected by asserting psel3. It gives the seven segment code for

the value entered through key pad.

4.4.4 UART module

Another peripheral device used is UART (Universal

asynchronous receiver transmitter). In UART, the receiver and

transmitter operate asynchronously. UART design consists of

three sub modules, namely, transmitter receiver and a baud rate

generator. The transmitter and the receiver operate with the

clock generated by the baud rate generator using a system

clock.

5.Results

The design is coded using verilog and simulated using XILINX

ISIM simulator. Figure 9 shows the simulation result when

master0 requires to read a character from the keypad.

Figure 9: Master0 reading the data from keypad

Figure 10: Master0 writing to seven segment display

The selection of the keypad decoder is done by address

decoder and required transfer is done. Following figures show

the simulation result for the seven segment decoder and UART.

Upon synthesis of the design we get the device utilization

summaries, which are also mentioned below.

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6582

Figure 11: Master0 Transmitting data to UART

5.1 Device Utilization Summary

Table 1 shows the device utilization after the place and route.

Table 1: Slice Logic Utilization

Device resource Utilized Total number

Slice register 325 948,480

Slice LUTs 514 474,240

Used as logic 505 474,240

Used as O6 465

Used as O5 &

O6

40

Exclusive route-

thrus

9

Bonded IOBs 994 1200

5.2 Timing Constraints

Table 2 shows the timing constraints of the design. All the

timing constraints were met as indicated by the positive slack.

Table 2: Timing constraints

Met Constraint Check

Worst

Case

Slack

Best

Case

Achieva

ble

Timing

Errors

Yes

Auto time

spec

constraint for

clock net

aclk_BUFGP

SETUP

HOLD
0.108ns 4.226ns 0

Table 3: clock period

Timing constraint Default period analysis for

Clock 'aclk'

Clock period 2.799ns (frequency:

357.315MHz)

Total number of 3886 / 497

paths / destination

ports

Delay 2.799ns (Levels of Logic = 5)

6. Conclusion:

Designed and implemented SoC bus architecture AMBA (AXI

and APB). AXI4 the main system bus and APB4 the peripheral

bus was implemented on a four master four slave system. Read

and write transactions are done by different masters with

different slaves. Whenever a master needs to communicate with

a particular slave, it will assert the necessary handshaking

signals and gain the access to that slave. The intended

communication will then follow. The whole design is simulated

and implemented on FPGA.

References

[1] Milica Mitic and Mile Stojcev, An Overview of On-

Chip Buses SER.: ELEC. ENERG. vol. 19, no. 3,

December 2006, 405-428.

[2] Clifford E. Cummings, "Coding And Scripting

Techniques for FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs," SNUG (Synopsys Users Group

Boston, MA 2000) Proceedings, September 2000.

[3] Flynn, D. Adv. RISC Machines Ltd., Cambridge,

“AMBA: enabling reusable on-chip designs”, IEEE

Micro, Publication Date: Jul/Aug1997.

[4] AMBA specification (Rev 2.0)

[5] ARM, “AMBA AXI protocol specifications (Version 2),

March 2010”, [Online] Available: http://www.arm.com.

[6] AMBA APB Protocol v1.0.

[7] Chenghai Ma, Zhijun Liu, Xiaoyue Ma, “Design and

Implementation of APB Bridge based on AMBA 4.0”,

IEEE transaction ,2011.

[8] Peter M Nyasulu, J Knight, Introduction to Verilog,

Carleton University Press, Ottawa, 2003.

[9] Samir Palnitkar, Verilog HDL: A Guide to Digital Design

and synthesis, 2nd ed, Prentice Hall PTR Pub, 2003.

[10] Clifford E. Cummings, "Non blocking assignments in

verilog synthesis, coding styles that kill," SNUG

(Synopsys Users Group Boston, MA 2000) Proceedings,

September 2000.

[11] Xilinx ISE synthesis and verification design guide.

Author Profile

Muhammed Ashraf T P received B.Tech. Degree from Viswajyothi

College of engineering, Muvattupuzha, Kerala, India in 2011.

Currently he is pursuing M. Tech in Microelectronics in the

http://www.arm.com/

Muhammed Asharaf.T.P, IJECS Volume 3Issue 6,June, 2014, Page No.6578-6583 Page 6583

Department of Electronics & Communication Engg, MIT, Manipal.

His area of interest is ASIC Design &Verification.

Manu Ramesh received B.E degree from Vidyaa Vikas College of

Engineering and Technology, Thiruchengode, Tamilnadu, India in

 2012. Currently he is pursuing M. Tech in Microelectronics in the

Department of Electronics & Communication Engg, MIT, Manipal.

His area of interest is ASIC design, VLSI design & testing, Verilog

coding and Embedded design.

Shankarnarayana Bhat M obtained his M.Tech from IISc,

Bangalore and is currently working as Associate professor-Senior in

the department of Electronics and communication Engineering, M.I.T

Manipal. He is also heading the Education Technology Cell of M.I.T.

Manipal. In addition to contributing as resource person for technical

workshops and conferences, he is also a recognized faculty trainer and

successfully conducted faculty training in various Engineering

colleges in India. He has presented technical papers, chaired many

national and International conferences and reviewd technical papers

for conferences and journals. His interests include Low Power VLSI

Design and Processor architecture in addition to Engineering

Education and Soft skills.

