

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 6 June, 2014 Page No. 6442-6447

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6442

A Genetic Algorithm Approach for Clustering
Mamta Mor

1
, Poonam Gupta

2
, Priyanka Sharma

3

1 OITM, Dept. Of CSE, GJUS&T,

India

 mamtamor12121990@gmail.com

2 OITM, Dept. Of CSE, GJUS&T,

India

poonamjindal3@gmail.com

3GJUS&T, Dept. Of CSE,

India

 pinki.sharma2912@gmail.com

Abstract: The paper deals with the applicability of GA to clustering and compares it with the standard K-means clustering technique. K-

means clustering results are extremely sensitive to the initial centroids, so many a times it results in sub-optimal solutions. On the other hand

the GA approach results in optimal solutions and finds globally optimal disjoint partitions. Fitness calculated on the basis of intra-cluster

and inter-cluster distance is the performance evaluation standard in this paper. The experimental results show that the proposed GA is more

effective than K-means and converges to more accurate clusters.

Keywords: clustering, genetic algorithm, k-means, fitness function

1. Introduction

Data mining is the process of extracting useful and hidden

information or knowledge from data sets. The information so

extracted can be used to improve the decision making

capabilities of a company or an organization [1][2][3]. Data

mining consists of six basic types of tasks which are Anomaly

detection, Association rule learning, Clustering, Classification,

Regression and Summarization. Clustering is one of the

important tasks of data mining. Clustering is defined as the

task of grouping objects in such a way that the objects in the

same group/cluster share some similar properties/traits. There

is a wide range of algorithms available for clustering like

hierarchical, K-means clustering [4][5][6]. K-means is one of

the most popular and frequently used clustering algorithm. It

clusters objects into K number of groups, where K is a positive

integer. But K-means has a major drawback that many a times

it converges to a sub-optimal solution due to large clustering

search space. Therefore, Evolutionary algorithms like genetic

algorithm are suitable for clustering task. A good GA explores

the search space properly as well as exploits the better

solutions to find the globally optimal solution [7].

 A GA is a stochastic search method[8][9] which works on

a population of individuals (chromosomes) and produces new

population with every generation by applying genetic

operators. The proposed GA has been applied to UCI

repository [19] of Machine Learning datasets i.e. „Seeds‟,

„Data_User_Modeling‟, „Wholesale customers data‟. The

experimental results show that the proposed GA is consistently

better and more effective than the k-means algorithm.

 The rest of the paper is organized as follows: Section 2

presents the related work. Section 3, 4 discusses the proposed

GA design and an example respectively. Section 5 presents the

data set descriptions and experimental results. Section 6

discusses the future scope and conclusion. Section 7 gives the

references.

2. Related Work

Data mining is a field with a large area of application.

Evolutionary algorithm particularly genetic algorithm and

genetic programming have been used in the field of data

mining & knowledge discovery [10]. Several GAs have been

used for mining real world datasets in medical domain and in

the field of education etc. [11][12]. A number of researchers

have focused on using GA for data mining tasks of

classification & clustering. Interest in the field of clustering

has increased recently due to the emergence of several areas

of application including bioinformatics, web use data analysis

and image analysis etc. [13][14]. A few of the earlier models

proposed for clustering are „Genetic K- means‟ and „Fastest

Genetic K- means‟ models, which find a globally optimal

partition of a given data into a specified number of clusters

[15][16]. Many other GA models have also been proposed for

clustering [17][18]. The GA model proposed earlier for

clustering have particularly used intra-cluster distance as the

parameter for calculating fitness function. This paper

proposes a GA model which uses both intra-cluster as well as

the inter-cluster distance to calculate the fitness.

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6443

3. Proposed GA Design

GA takes as input a population of individuals (binary or real

valued) which evolves over generation by applying genetic

operators (crossover and mutation).

3.1 Encoding Scheme:

 Initialization: The initial population corresponds to X no. of

centroids (where X=pop_size*k) randomly selected from the

.normalized data set, where k is the number of clusters to be

formed. The data sets taken from the UCI repository are

normalized before applying GA.

 Chromosome length: Each chromosome in the population

..is a real valued vector of length k*nv where k is the number

of clusters to be formed, nv is the number of

attributes/variables in the data set, which means k rows are

randomly selected from the dataset to represent an individual

where each ki (i=1,2,…m) represents one of the centroid of

chromosomex(x=1 to pop_size).

 Initial population size: pop_size (no of rows), k*nv (no of

attributes), which means pop_size*k number of centroids are

actually selected for initial population.

3.2 Fitness Function:

 The objective of fitness function is to maximize inter-cluster

distance and minimize intra-cluster distance. The objects are

clustered on the basis of Euclidean distance, each object

belongs to the cluster whose centroid to object Euclidean

distance is minimum. Let {Xi; i=1,2,…n} be a set of n objects,

each with p attributes. The n objects are divided into k

clusters with {Cm; m=1,2..k} be the set centroids

corresponding to k clusters.

Object-Centroid Distance (Euclidean distance): The

distance between an object and a centroid can be calculated by

Euclidean distances as follows:

E
D
 (Xi, Cj) =√∑

 (1),

where i=1, 2,..n; j=1,2,….k

 Intra-Cluster Distance: The intra-cluster distance is the

distance between a cluster‟s elements. The intra-cluster

distance of q
th

cluster where q=1,2,..k is calculated as follows:

 D
q

INTRA(Xi,Xj) =√∑ ∑
 ⁄

 (2),

where m is no of elements in the q
th

cluster

The total intra-cluster distance is computed as below:

S (DINTRA) = ∑
 (D

q
INTRA) (3)

Inter-Cluster Distance: The

inter-cluster distance is the

distance between two cluster‟s

elements. The inter-cluster

distance between q
th

 and r
th

cluster

where q, r=1,2..k is calculated as

follows:

D
q,r

INTER(Xi,Xj)=

√∑ ∑
 ⁄

(4) where m, n is no of elements

in q
th

and r
th

cluster respectively.

 It is to be noted that for r=q inter-

cluster distance is null and Inter-

cluster distance between r,q & q,r

is same.

 The total inter-cluster distance is computed as below:

 S(DINTER)=∑ ∑

 (D

q,r
INTER) (5)

Fitness: The fitness is computed by using the following

formula:

Fmax=max(S (DINTER)/S (DINTRA)) (6)

We have used the roulette wheel as the selection operator.

3.3 Crossover Operator

Genetic operators are applied to maintain genetic diversity.

Genetic diversity/variation is necessary for the process of

evolution. Crossover operator is one of the genetic operators.

Crossover is applied to (pc*pop_size) chromosomes where pc

is the probability of crossover [7]. The chromosomes are real

valued vectors and the crossover applied is arithmetic

crossover which works as follow:

Offspring1= (α * parent1) + ((1-α) * parent2)

 Offspring2= ((1-α) * parent1) + (α* parent2)

 3.4 Mutation Operator

The mutation applied is

uniform mutation. Mutation is

applied to (pm*pop_size*u)

number of elements/gene

where pm is the probability of

mutation & u is the

chromosome length. The

uniform mutation replaces the

value of chosen element/gene

by a value randomly generated

between the upper and lower

bounds for that gene. Since the

data is normalized, so the value

of all genes lie between 0 & 1.

4: An Example

Table1 (The Example Dataset) Table 2 (Normalized Example Dataset)

10 20 10

12 18 8

11 21 11

9 20 9

10 17 11

40 50 60

42 48 58

41 51 59

38 47 60

40 52 57

80 100 120

81 101 119

78 98 118

80 100 121

82 102 120

0.0137 0.0353 0.0177

0.0411 0.0118 0

0.0274 0.0471 0.0265

0 0.0353 0.0088

0.0137 0 0.0265

0.4247 0.3882 0.4602

0.4521 0.3647 0.4425

0.4384 0.4000 0.4513

0.3973 0.3529 0.4602

0.4247 0.4118 0.4336

0.9726 0.9765 0.9912

0.9863 0.9882 0.9823

0.9452 0.9529 0.9735

0.9726 0.9765 1.0000

1.0000 1.0000 0.9912

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6444

Let us consider a dataset with n=15 & nv= 3, where n is the

number of rows and nv is the number of attributes. Table 1

shows the actual dataset whereas Table 2 shows the

normalized dataset. Let pop_size be 4 & k=3.For pop_size=4,

rows actually selected (X=pop_size*k) =4*3=12. Let Y=

[4,12,14,7,9,1,2,3,5,13,11,15] be the indices returned of the

selected 12 rows. The rows corresponding to the first 3

indices represent the 1
st
 chromosome, where 1

st
 index

represents the 1
st
 centroid, 2

nd
 index represents the 2

nd

centroid, and 3
rd

 index represents the 3
rd

 centroid. Each

chromosome has a length (u=k*nv) =3*3=9. It will become

clear with the Table 3 given below:

The first three elements in each row corresponds to the 1
st

centroid, the next three elements in each row corresponds to

the 2
nd

centroid and the last three elements in each row

corresponds to the 3
rd

 centroid of every chromosome

The fitness of each chromosome will be calculated by the

fitness formula proposed above:

Let us consider chromosome No. 1 where, 1
st
 centroid (C1) = 0

0.0353 0.0088 represents cluster1, 2
nd

 centroid (C2) = 0.9863

0.9882 0.9823 represents cluster2 and 3
rd

 centroid (C3) =

0.9726 0.9765 1.0000, represents cluster3.

Fitness Function returns a 1-by-15 vector IDX containing the

cluster indices of each of the 15 points/rows by using squared

Euclidean distances equation (1) given above:

 Table 4 (IDX)

, which shows that the first 10 points of the example dataset

belong to the 1
st
 cluster1, 11

th
,13

th
,14

th
 points belong to the 2

nd

cluster, 12
th

 and 15
th

 belong to the 3
rd

 cluster.

The intra-cluster (Table 5) and inter-cluster distance (Table 6)

of the clusters calculated by the equation No. 2 & 4

respectively given above is:

Inter-cluster distance between clusters 1-1, 2-2, 3-3 is zero and

between 1-2and 2-1, 2-3 and 3-2, 1-3 and 3-1 is same. So, it

needs not to be calculated twice.

The total intra-cluster and inter-cluster distance is 5.0420 and

2.7763 respectively.

The fitness corresponding to chromosome No.1 = 2.7763 /

5.0420 = 0.5506

Similarly, the fitness corresponding to chromosome No. 2, 3

and 4 calculated are 0.4368, 0.1907 & 0.3434 respectively. We

can see that chromosome No.1 has the best fitness among all

chromosomes for 1
st
 iteration.

The crossover operator is applied on two parents to produce

two new off springs. Let us apply crossover on 3
rd

 & 2
nd

chromosome of Table 3.

So, Parent 1= 0.0411 0.0118 0 0.0274 0.0471 0.0265

0.0137 0 0.0265

Parent 2= 0.4521 0.3647 0.4425 0.3973 0.3529 0.4602

0.0137 0.0353 0.0177

Let α= 0.6, then

Offspring 1= 0.2055 0.1530 0.1770 0.1754 0.1694 0.2000

0.0137 0.0131 0.0230

Offspring 2= 0.2877 0.2235 0.2655 0.2493 0.2306 0.2867

0.0137 0.0212 0.0212

The mutation operator is applied to the genes/elements. Let

us apply mutation on the 5
th

 element of 1
st
 chromosome of

table 3. The selected element is replaced by a random

element between the lower and upper limit of that element

which is 0 &1 respectively in this case.

Parent 3= 0 0.0353 0.0088 0.9863 0.9882 0.9823 0.9726

0.9765 1.0000

Offspring 3= 0 0.0353 0.0088 0.9863 0.7982 0.9823 0.9726

0.9765 1.0000

Chromosome No. Selected rows indices Chromosome

 1 4,12,14 0 0.0353 0.0088 0.9863 0.9882 0.9823 0.9726 0.9765 1.0000

2 7,9,1 0.4521 0.3647 0.4425 0.3973 0.3529 0.4602 0.0137 0.0353 0.0177

3 2,3,5 0.0411 0.0118 0 0.0274 0.0471 0.0265 0.0137 0 0.0265

4 13,11,15 0.9452 0.9529 0.9735 0.9726 0.9765 0.9912 1.0000 1.0000 0.9912

Table 3

1 1 1 1 1 1 1 1 1 1 3 2 3 3 2

Cluster No. Intra-cluster distance

 1 4.9275

 2 0.0284

 3 0.0861

 Cluster1-Cluster2 Inter-cluster distance

 1-2 1.3805

 1-3 1.3505

 2-3 0.0452

Table 6 (Inter-cluster distance b/w two clusters)

Table 5 (Intra-cluster distance of each cluster)

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6445

5. Experimental Data & Results

5.1 Datasets & platform description

The proposed GA design in the paper is implemented in

MATLAB version 7.12.0 on a machine having 1 GB of RAM

and INTEL core duo processor with 1.66 GHz speed.

The efficiency of the proposed GA design is evaluated by

conducting experiments on three datasets downloaded from

UCI repository [19]. The description of the data sets used for

evaluating the proposed GA model is given below in Table 7:

All the three datasets are converted into csv files and the

attribute values of „string‟ type are converted into real values.

5.2 Results

 The results found during the simulation of the GA model are

described as follows: Table1, 2 and 3 show the comparison of

GA model with k-means algorithm of dataset „seeds‟,

„Data_User_Modeling‟ and „Whole sale customers‟

respectively. Figure 1, 2 and 3 show the comparison of GA

model with k-means algorithm of dataset „seeds‟,

„Data_User_Modeling‟ and „Whole sale customers‟

respectively through bar charts. Figure 4, 5 shows the fitness

versus generation graph and it can be seen that genetic

algorithm has high fitness in all cases thus better and efficient

to use.

Comparison between GA (fitness) & K-means (fitness) for

dataset ‘seeds’

 Figure 1

Table 9

Comparison between GA (fitness) & K-means (fitness) for

dataset ‘Whole Sale Customer’

Comparison between GA (fitness) & K-means (fitness)

for dataset ‘Data_User_Modeling’‟

 Data Set No. of

instances

No. of

attributes

Data_User_Modeling

(Training data)

258 6

Seeds 210 8

Whole sale customers 440 8

Table 7

K GA(fitness) Kmeans(fitness)

2 .0089 .0089

3 .0379 .0223

4 .0790 .0713

5 .1345 .1259

6 .2088 .1893

K GA(fitness) Kmeans(fitness)
2 .0044 .0044

3 .0191 .0136

4 .0483 .0358

5 .0930 .0761

6 .1542 .1256

K GA(fitness) Kmeans(fitness)

2 .0055 .0055

3 .0184 .0173

4 .0389 .0342

5 .0690 .0615

6 .1012 .0945

0.0089

0.0223

0.0714

0.1259

0.1893

0.0089

0.0379

0.079

0.1345

0.2088

0

0.05

0.1

0.15

0.2

0.25

k=2 k=3 k=4 k=5 k=6

k-means GA

0.0044
0.0136

0.0358

0.0761

0.1256

0.0044

0.0191

0.0483

0.093

0.1542

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

k=2 k=3 k=4 k=5 k=6

k-means GA

 Table 9

 Figure 3

 Table 10

 Table 8

 Figure 2

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6446

The above results makes it evident that GA gives

consistently better results than k-means algorithm across all

the three sets, except for the value of k=2.

Fitness versus Generation graph of dataset

‘Data_User_Modeling’ for k= 3, 4

 Figure 4 (K=3)

 Figure 5 (K=4)

It is clear from the figure shown below that fitness increases

with no. of generations and then it stabilizes

6. Conclusion and Future scope

Clustering has a wide range of application. A good clustering

algorithm yields a good quality cluster with high intra-cluster

similarity/low intra-cluster distance and low-inter cluster

similarity/high inter-cluster distance. It also produces a global

optimal or near to global optimal solution/result. The paper

proposed a genetic algorithm which produces better clusters

with low intra-cluster & high inter-cluster distance as

compared to k-mean algorithm. The proposed GA code also

overcomes the problem of local optimal solution faced in k-

means by providing optimal solution for a given data set.

Experimental results demonstrate that the proposed GA has

clearly outperformed the standard K-means in terms of

providing optimal solution.

 The GA design presented in this paper overcomes one of

the two major drawbacks of k-means clustering algorithm i.e.

converging at sub optimal solution due to bad seed

initialization. The other drawback of K-means is that K

(number of clusters) has to be predetermined before applying

k-means/clustering algorithm on a dataset. The future

directions of the work presented in this paper would be to

modify the GA in such a way that the best value of k will be

calculated automatically by the GA model.

7. References

[1] J. Han, M. Kamber, and J. Pei, Data mining: concepts

and techniques. Morgan kaufmann, 2006.

[2] A. A. Freitas, “A survey of evolutionary algorithms

for data mining and knowledge discovery,” in Advances in

evolutionary computing, Springer, 2003, pp. 819–845.

[3] A. A. Freitas, Data Mining and Knowledge Discovery

with Evolutionary Algorithms. Springer, 2002.

[4] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-

means clustering algorithm,” 1997.

[5] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.

Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means

clustering algorithm: Analysis and implementation,” Pattern

Anal. Mach. Intell. IEEE Trans. On, vol. 24, no. 7, pp. 881–

892, 2002.

[6] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl,

“Constrained k-means clustering with background

knowledge,” in ICML, 2001, vol. 1, pp. 577–584.

[7] Z. Michalewicz, Genetic algorithms+ data

structures= evolution programs. springer, 1996.

[8] M. C. Cowgill, R. J. Harvey, and L. T. Watson, “A

genetic algorithm approach to cluster analysis,” Comput.

Math. Appl., vol. 37, no. 7, pp. 99–108, 1999.

[9] J. J. Grefenstette, Genetic Algorithms and Their

Applications: Proceedings of the Second International

Conference on Genetic Algorithms. Psychology Press, 2013.

[10] A. A. Freitas, “A review of evolutionary algorithms

for data mining,” in Soft Computing for Knowledge Discovery

and Data Mining, Springer, 2008, pp. 79–111.

[11] P. Vishwakarma, Y. Kumar, and R. K. Nath, “Data

Mining Using Genetic Algorithm (DMUGA).”

[12] B. Minaei-Bidgoli and W. F. Punch, “Using genetic

algorithms for data mining optimization in an educational

web-based system,” in Genetic and Evolutionary

Computation—GECCO 2003, 2003, pp. 2252–2263.

0 10 20 30 40 50 60 70 80
0.0166

0.0168

0.017

0.0172

0.0174

0.0176

0.0178

0.018

0.0182

0.0184

GENERATIONS

F
IT

N
E

S
S

0 10 20 30 40 50 60 70 80
0.034

0.0345

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

0.039

GENERATIONS

F
IT

N
E

S
S

0.0055

0.0173

0.0342

0.0615

0.0945

0.0055

0.0184

0.0389

0.069

0.1012

0

0.02

0.04

0.06

0.08

0.1

0.12

k=2 k=3 k=4 k=5 k=6k-means GA

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6447

[13] U. Maulik and S. Bandyopadhyay, “Genetic

algorithm-based clustering technique,” Pattern Recognit., vol.

33, no. 9, pp. 1355–1365, 2000.

[14] R. H. Sheikh, M. M. Raghuwanshi, and A. N.

Jaiswal, “Genetic algorithm based clustering: a survey,” in

Emerging Trends in Engineering and Technology, 2008.

ICETET’08. First International Conference on, 2008, pp.

313–319.

[15] K. Krishna and M. N. Murty, “Genetic K-means

algorithm,” Syst. Man Cybern. Part B Cybern. IEEE Trans.

On, vol. 29, no. 3, pp. 433–439, 1999.

 [16] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown,

“FGKA: A fast genetic k-means clustering algorithm,” in

Proceedings of the 2004 ACM symposium on Applied

computing, 2004, pp. 622–623.

[17] R. M. Cole, Clustering with genetic algorithms. Citeseer,

1998.

[18] U. Maulik and S. Bandyopadhyay, “Genetic

algorithm-based clustering technique,” Pattern Recognit., vol.

33, no. 9, pp. 1355–1365, 2000.

[19]Department of Information and Computer Science,

University of California at Irvine, UCI Repository of Machine

Learning databases.

