

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1184-1191

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1184

A Review on Tcp Westwood Protocol For Simulated And Internet
Environment

Vijay P Reshamwala*, Kaushika D Patel
Student, BVM, v. v. nagar, GTU, India

Department of Electronics, BVM, v. v. nagar, GTU, India
vijay.reshamwala528@gmail.com*; kdpatel@bvmengineering.ac.in

Date of Submission: 18 April, 2013

 Abstract:

This paper discusses various versions of TCP and their congestion control algorithm changes in TCP’s existing congestion
control, limitation of older version of TCP variants. We discuss new version of TCP called TCP Westwood with sender side
modification of the window congestion control scheme TCP Westwood continuously estimate at sender side packet rate of
connection by monitoring ACK reception rate. In this paper we reviewed the comparison of performance of TCP Reno with
TCP Westwood in good link and lossy link. In this paper we have discussed the fairness and friendliness issue of TCP
Westwood. Also we discuss the mechanism called agile probing that improves the performance of TCP Westwood in slow start
phase. This method improves the startup performance of TCP Westwood. This method improves the performance of TCP
Westwood in congestion avoidance phase as well as when large amount of bandwidth that suddenly becomes available.

Keywords: Congestion Avoidance, TCP Westwood,
Bandwidth Estimated, Friendliness, Router Buffer Size,
random errors

1. Introduction:
The Internet is an unreliable network that cannot guarantee
all data sent by host will be delivered correctly to the
destination .As a result, reliable end-to-end data delivery is
delegated to transport layer protocols such as the
transmission control protocol.

The transmission control protocol is most widely used and
established implementation of the reliable protocols but
many different versions of TCP have been developed as the
algorithms and techniques for increasing efficiency and
performance have been refined. We examine the various
versions of TCP and characterize the attributes of these
protocols which contribute to their improved performance.

2. TCP Variants:
2.1 TCP Tahoe:
The Tahoe TCP algorithms include Slow-Start, Congestion
Avoidance, and Fast Retransmit. The idea of TCP Tahoe is
to start the congestion window at the size of a single
segment (the MSS) and send it when a connection is
established. If the acknowledgement arrives before the
retransmission timer expires, add one segment to the
congestion window. This is a multiplicative increase
algorithm and the window size increases exponentially. The
window continues to increase exponentially until it reaches

the threshold that has been set. This is the Slow Start Phase.
Once the congestion window reaches the threshold, TCP
slows down and the congestion avoidance algorithm takes
over. Instead of adding a new segment to the congestion
window every time an acknowledgement arrives, TCP
increases the congestion window by one segment for each
round trip time. This is an additive increase algorithm. To
estimate a round trip time, the TCP codes use the time to
send and receive acknowledgements for the data in one
window. TCP does not wait for an entire window of data to
be sent and acknowledged before increasing the congestion
window. Instead, it adds a small increment to the congestion
window each time an acknowledgement t arrives. The
small increment is chosen to make the increase averages
approximately one segment over an entire window. When a
segment loss is detected through timeouts, there is a strong
indication of congestion in the network. The slow start
threshold is set to one-half of the current window size (the
minimum of the receiver’s advertised window and the
sender’s congestion window). Moreover, the congestion
window is set to 1 segment, which forces slow start [9].

2.1.1 Demerits Of TCP Tahoe:
The problem with Tahoe is that it takes a complete timeout
interval to detect a packet loss and in fact, in most
implementations it takes even longer because of the coarse
grain timeout. Also since it doesn’t send immediate ACK’s,
it sends cumulative acknowledgements, therefore it follows
a ‘go back n ‘approach. Thus every time a packet is lost it
waits for a timeout and the pipeline is emptied. This offers a
major cost in high band-width delay product links.

http://www.ijecs.in/�

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1185

2.2 TCP Reno:
TCP Reno incorporated the fast recovery mechanism TCP
Reno use same Slow-Start, Congestion Avoidance algorithm
only change is that When a segment is detected by fast
retransmit, the sender does Fast Recovery [9]:

In TCP Reno, TCP source behaves in the same way as that
in TCP Tahoe. However, when the segment loss is detected
by fast retransmission algorithm, the slow start threshold is
set to half the current size of the congestion window. The
congestion window size is then set to be the same as the
slow start threshold plus 3 times the segment size. This is
the Fast Recovery Phase, in which the window size is then
increased by one segment when a duplicate ACK is received.
When the non-duplicate ACK corresponding to the
retransmitted segment is received, the congestion window is
restored to the slow start threshold [9].

2.2.1 Demerits Of TCP Reno:
Segments not be acknowledged cumulatively but should be
acknowledged selectively. The selective acknowledgment
extension uses two TCP options. The first is an enabling
option, "SACK-permitted", which may be sent in a SYN
segment to indicate that the SACK option can be used once
the connection is established. The other is the SACK
option itself, which may be sent over an established
connection once permission has been given by SACK-
permitted. The SACK option is to be included in a segment
sent from a TCP that is receiving data to the TCP that is
sending that data; The SACK option is to be used to convey
extended acknowledgment information from the receiver to
the sender over an established TCP connection. Thus each
ACK has a block which describes which segments are being
acknowledged. Thus the sender has a picture of which
segments have been acknowledged and which are still
outstanding. [9].

2.3 TCP New Reno:
New Reno is a slight modification over TCP Reno. It is able
to detect multiple packet losses and thus is much more
efficient that Reno in the event of multiple packet losses.
Like Reno, New-Reno also enters into fast-retransmit when
it receives multiple duplicate packets, however it differs
from Reno in that it doesn’t exit fast-recovery until all the
data which was out standing at the time it entered fast
recovery is acknowledged. Thus it overcomes the problem
faced by Reno of reducing the cwnd multiples times. The
fast-transmit phase is the same as in Reno. The difference in
the fast recovery phase which allows for multiple re-
transmissions in new-Reno. Whenever new-Reno enters fast
recovery it notes the maximums segment which is
outstanding. The fast-recovery phase proceeds as in Reno,
however when a fresh ACK is received then there are two
cases:

If it ACK’s all the segments which were outstanding when
we entered fast recovery then it exits fast recovery and sets
cwnd to ssthresh and continues congestion avoidance like
Tahoe.

 If the ACK is a partial ACK then it deduces that the next
segment in line was lost and it re-transmits that segment and

sets the number of duplicate ACKS received to zero. It exits
Fast recovery when all the data in the window is
acknowledged [9].

2.3.1 Demerits Of TCP New Reno:
New-Reno suffers from the fact that it’s taking one RTT to
detect each packet loss. When the ACK for the first
retransmitted segment is received only then can we deduce
which other segment was lost

2.4 TCP SACK:
TCP with ‘Selective Acknowledgments’ is an extension of
TCP Reno and it works around the problems face by TCP
Reno and TCP New-Reno, namely detection of multiple lost
packets, and re-transmission of more than one lost packet
per RTT. SACK retains the slow-start and fast retransmits
parts of Reno. SACK TCP requires that segments not be
acknowledged cumulatively but should be acknowledged
selectively. The selective acknowledgment extension uses
two TCP options. The first is an enabling option, "SACK-
permitted", which may be sent in a SYN segment to
indicate that the SACK option can be used once the
connection is established. The other is the SACK option
itself, which may be sent over an established connection
once permission has been given by SACK-permitted. The
SACK option is to be included in a segment sent from a
TCP that is receiving data to the TCP that is sending that
data; The SACK option is to be used to convey extended
acknowledgment information from the receiver to the sender
over an established TCP connection. Thus each ACK has a
block which describes which segments are being
acknowledged. Thus the sender has a picture of which
segments have been acknowledged and which are still
outstanding. [9].

2.4.1 Demerits Of TCP SACK:
The biggest problem with SACK is that currently selective
acknowledgements are not provided by the receiver to
implement SACK we’ll need to implement selective
acknowledgment which is not a very easy task.

2.5 TCP Vegas:

2.5.1 New Re-Transmission Mechanism:
It keeps track of when each segment was sent and it also
calculates an estimate of the RTT by keeping track of how
long it takes for the acknowledgment to get back. Whenever
a duplicate acknowledgement is received it checks to see if
the (current time segment transmission time)> RTT estimate;
if it is then it immediately retransmits the segment without
waiting for 3 duplicate acknowledgements or a coarse
timeout [12].

2.5.2 Modified congestion avoidance algorithm:

Instead of increasing the congestion window size blindly
until losses occur, TCP Vegas tracks the changes in the
throughput (or more specifically, changes in the sending
rates) and then adjusts the congestion window size. It
observes changes in the round-trip times of the segments
that the connection has sent before. It then calculates and
compares the measured throughput against the expected

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1186

throughput. If the expected sending rate is higher than the
actual sending rate by a or less, TCP Vegas fears that it is
not utilizing the bandwidth efficiently by occupying some
router buffers and thus increases the congestion window by
one. If the expected rate is higher than the actual rate by b or
more, TCP Vegas assumes that congestion starts to build up
and thus decreases the congestion window by one.
Otherwise, the congestion window remains unchanged [12].

2.5.3 Modified slow-start:

TCP Reno doubles its window size every RTT during the
slow start phase. TCP Vegas, on the other hand, doubles the
window size only every other RTT during slow-start [12].

2.5.4 Demerits Of TCP Vegas:
TCP Vegas uses a conservative algorithm to decide how and
when to vary its congestion window. Thus, when TCP
Vegas and TCP Reno connections share a bottleneck link,
Reno uses up most of the link and router buffer space. TCP
Vegas, interpreting this as a sign of congestion, decreases
the congestion window, which leads to an unfair sharing of
available bandwidth in favour of TCP Reno.

 In TCP Vegas, the parameter baseRTT denotes the smallest
round-trip delay the connection has encountered and is used
to measure the expected throughput. When rerouting occurs
in between a connection, the RTT of a connection can
change. When the new route has a longer RTT, the Vegas
connection is not able to deduce whether the longer RTTs
experienced are caused by congestion or route change.
Without this knowledge, TCP Vegas assumes that the
increase in RTT is due to congestion along the network path
and hence decreases the congestion window size.

2.6 TCP Westwood:
TCP Westwood exploits two basic concepts: the end-to-end
estimation of the available bandwidth, and the use of such
estimate to set the slow start threshold and the congestion
window. TCPW source continuously estimates the packet
rate of the connection by properly averaging the rate of
returning ACKs. The estimate is used to compute the
“permissible” congestion window and slow start threshold to
be used after congestion episode is detected, that is, after
three duplicate Acknowledgments or after a timeout. It
selects a slow start threshold and a congestion window that
is consistent with the effective connection rate at the time
congestion is experienced. We call such mechanism faster
recovery.

3. Overview of TCP Westwood:

In TCP Westwood the sender continuously computes the
Connection Bandwidth Estimate (BWE) which is defined as
the share of bottleneck bandwidth used by the connection.
Thus, BWE is equal to the rate at which data is delivered to
the TCP receiver. The estimate is based on the rate at which
ACKs are received after a packet loss indication, (i.e.
reception of 3 duplicate ACKs, or timeout expiration). , the
sender resets the congestion window and the slow start
threshold based on BWE. This BWE varies from flow to
flow sharing the same bottleneck; it corresponds to the rate
actually achieved by each INDIVIDUAL flow. Thus, it is a

FEASIBLE (i.e. achievable) rate by definition.
Consequently, the collection of all the BWE rates, as
estimated by the connections sharing the same bottleneck, is
a FEASIBLE set. When the bottleneck becomes saturated
and packets are dropped, TCPW selects a set of congestion
windows that correspond exactly to the measured BWE
rates and thus reproduce the current individual throughputs.
Another important element of this procedure is the RTT
estimation. RTT is required to compute the window that
supports the estimated rate BWE.

3.1 TCP Westwood: Algorithm:
TCPW, congestion window increments during slow start
and congestion avoidance remain the same as in Reno, i.e.
they are exponential and linear, respectively. A packet loss
is indicated by (a) the reception of 3 DUPACKs, or (b) a
coarse timeout expiration The general idea is to use the
estimated bandwidth BWE to set the congestion window
(cwin) and the slow start threshold (ssthresh) after a
congestion episode

3.1.1 Algorithm after n duplicate ACKS [5]:
if (n DUPACKs are received)
ssthresh = (BWE * RTTmin) / seg_size;
if (cwin > ssthresh) /* congestion avoid. */
cwin = ssthresh;
endif
endif

In the pseudo-code, seg_size identifies the length of a TCP
segment in bits. Note that the reception of n DUPACKs is
followed by the retransmission of the missing segment, as in
the standard Fast Retransmit implemented by TCP Reno.
Also, the window growth after the cwin is reset to ssthresh
follows the rules established in the Fast Retransmit
algorithm (i.e., cwin grows by one for each further ACK,
and is reset to ssthresh after the first ACK acknowledging
new data). During the congestion avoidance phase we are
probing for extra available bandwidth. Therefore, when n
DUPACKs are received, it means that we have hit the
network capacity (or that, in the case of wireless links, one
or more segments were dropped due to sporadic losses).
Thus, the slow start threshold is set equal to the window
capable of producing the measured rate BWE when the
bottleneck buffer is empty (namely, BWE*RTTmin). The
congestion window is set equal to the ssthresh and the
congestion avoidance phase is entered again to gently probe
for new available bandwidth.. Note that after ssthresh has
been set, the congestion window is set equal to the slow start
threshold only if cwin > ssthresh.

3.1.2 algorithm after coarse timeout expiration [5]:
if (coarse timeout expires)
cwin = 1;
ssthresh = (BWE * RTTmin) / seg_size;
if (ssthresh < 2)
ssthresh = 2;
endif;
endif

The rationale of the algorithm above is that after a timeout,
cwin and the ssthresh are set equal to 1 and BWE,
respectively. Thus, the basic Reno behavior is still captured,

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1187

while a speedy recovery is ensured by setting ssthresh to the
value of BWE.

3.2 Strategy for Bandwidth Estimation :
The TCPW sender uses ACKs to estimate BWE. More
precisely, the sender uses the following information: (1) the
ACK arrival times and, (2) the increment of data delivered
to the destination. Let assume that an ACK is received at the
source at time tk, notifying that dk bytes have been received
at the TCP receiver. We can measure the sample bandwidth
used by that connection as bk=dk/(tk–tk–1), where tk−1 is
the time the previous ACK was received. Letting Δtk=tk–
tk–1, then bk=dk/Δtk. Since congestion occurs whenever the
low-frequency input traffic rate exceeds the link capacity,
we employ a low pass filter to average sampled
measurements and to obtain the low-frequency components
of the available bandwidth. More precisely, we use the
following discrete approximation of the low pass filter due
to Tustin.

Let bk be the bandwidth sample, and bˆk the filtered
continuous first order low-pass filter using the Tustin
estimate of the bandwidth at time tk. Let αk be the time-
varying exponential filter coefficient at tk. The TCPW filter
is then given by [4]

b̂k = αk b̂k-1 + (1- αk) (bk+ bk-1)/2
where,
αk = (2τ-Δ tk)/ (2τ+Δtk)

 1/ τ is the filter cut-off frequency

Notice the coefficients αk depend on Δtk to properly reflect
the variable inter-arrival times.

3.3 TCP Westwood fairness and friendliness:
Fair bandwidth sharing implies that all connections are
provided with similar opportunity to transfer data.
Friendliness is another important property of TCP protocol.
TCP Westwood must be friendly to other TCP variants. That
is TCP Westwood connection must be able to coexist with
connections running TCP variants while providing
opportunity for all connections to progress satisfactorily

Figure. 3.1 Convergence towards the fair bandwidth sharing [5]

Consider the case of two connections with the same RTTs.
Suppose, for the sake of example that the RTT is X packet
Transmission times, and the bottleneck has X buffers. One

connection, say A, starts first. Its window “cycles” between
X and 2X each cycle terminating when buffer overflow.
Later, connection B starts, first in slow start mode, and then
in congestion avoidance mode. In congestion avoidance,
during each cycle the A and B windows grow approximately
at the same rate, i.e. one segment per RTT. Eventually, the
bottleneck buffer overflows, terminating the cycle. One can
show that the window at overflow is:

Wi = Ri (b/C +RTT), for i = A, B

Where, R is the achieved rate (i.e. BWE), b is the bottleneck
buffer size, and C is the bottleneck link capacity.

This is a general property true for all TCP protocols, and in
particular TCPW. After overflow, TCPW reduces the
windows to new values Wi’ as follows:

Wi’= Ri (RTT) for i = A, B

Thus, the ratios of the windows of connections A and B are
preserved after overflow. Yet, the ratio WB/WA keeps
increasing during congestion avoidance. Consequently, the
B window and throughput ratchet up at each cycle.
Equilibrium is reached when the two connections have the
same windows and the same fair share of the bandwidth.
The Figure 3.1 graphically illustrates the convergence to the
fix point WA=WB.

It can also be applied to the case when the\ bottleneck is
affected by random errors equally hitting all connections.
The same method can also be used to evaluate reciprocal
“friendliness” of TCPW and TCP Reno. If two connections -
TCPW and Reno - are sharing the bottleneck, and the buffer
size is exactly equal to the optimal window size to “fill the
pipe”, then the two connections spilt the bottleneck fairly. In
fact, at equilibrium, each has window = X when buffer
overflows. After overflow, the TCPW connection gets
window = C*RTT/2 = X/2; TCP Reno simply half the
current window, to X/2. Thus, friendliness is preserved Note
that sizing the buffer to match the “pipe size” is a common
and intuitively acceptable design choice. If the buffer is
much smaller than pipe size, TCPW returns a larger CWIN
than Reno, and thus tends to capture the channel. If, on the
other hand, the buffer is several times larger than pipe size,
Reno tends to prevail over TCPW.

Here represented simulation result illustrating the accuracy
of TCP Westwood bandwidth estimation scheme

Figure. 3.2 TCPW with concurrent UDP traffic-bandwidth estimation [8]

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1188

Figure.3.2 shows a single TCP connection sharing the
bottleneck link with two background UDP ON/OFF sources
of varying data rates with no flow control. TCP packets are
1400 bytes in length including TCP/IP headers. TCP and
UDP packets are assigned the same priority. The 5 Mbps
bottleneck link has a round trip propagation time of 70 ms.
Each UDP connection transmits at a constant bit rate of 1
Mbps while ON. Both UDP connections start in the OFF
state; after 25s, the first UDP connection is turned ON,
joined by the second one at 50s; the second connection
follows an OFF-ON-OFF pattern at times 75s, 125s and
175s; at time 200s the first UDP connection is turned off as
well..

The results in Figure.3.2 confirm the effectiveness of the
TCP Westwood bandwidth estimation perfectly tracks the
UDP fluctuations, adjusting throughput accordingly.

 TCP Westwood performance in presence of link error

Here represented simulation result in figure 3.3 comparing
the throughput of Reno and TCPW as a function of error
rates. The bottleneck bandwidth is set to 45Mbps, and the
two-way propagation time is 70ms. With no errors, the
performance of TCPW and Reno is virtually identical. As
error rate increases, TCPW outperforms Reno. At 1 % error
rates, appropriate for wireless links, the throughput
improvement is615 %. As the error rate increases further,
say above 10%, even TCPW collapses, as expected.

Figure. 3.3 Impact of error rates [8]

Experimental results seen in figure 3.3 confirms that new
control scheme converges to fair share at steady state under
uniform path conditions, also TCP Westwood handle losses
caused by link errors or wireless channel more efficiently
than TCP Reno.

Figure. 3.4 Good put as function of one-way end-to-end delay [7]

Figure 3.4 represents simulation results that confirmed that
Westwood performs better than Reno under all tested RTTS
but it slightly out performed by Sack if it end-to-end delay is
smaller than 0.2 seconds as depicted in Figure3.4(10
connections,45 Mb/s link capacity).

Simulation seen that for small RTTs Sack manages to
recover fast enough on other hand TCP Westwood suffer
from being too aggressive for small RTTS and result poorly
accurate bandwidth estimation forces it into slow start state.

Internet measurements

Here researcher test TCPW in an actual Internet
environment, test carried out a set of Internet experiments
using the configuration depicted in Figure 3.5 The sources
are at UCLA, while

Table 1 Internet throughput measurements [5]

Fig.3.5. Internet measurement scenario [5]

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1189

The destinations are chosen in three different continents
(Europe, South America, and Asia). The destination hosts
are, of course, unaware whether the source host runs TCPW
or Reno. Tests were scheduled during normal working hours
at the destination sites. Experiments included either single or
multiple file transfers. Throughput results were obtained by
averaging repeated single file transfers. Multiple file transfer
experiments were used to assess TCPW fairness. A rather
large file size was used (10Mbytes) to capture only steady
state behavior. A standard FTP client (ncftp-3.0.2) was used
as testing software with additional code for obtaining
detailed logging at 1s intervals. Here measured application
throughput in terms of user data/s as reported by ncftp. The
average throughput achieved by Reno and TCPW on the
various intercontinental connections is shown in table 1.
Tests were repeated about 200 times throughout the day.
The results show that TCPW performs marginally better that
Reno on the Italy and Taiwan connections. It performs
significantly better on the Brazil connection.

TCP Westwood introduce faster recovery to avoid over
shrinking cwin after three duplicate ACKs by taking into
account the end-to-end estimation of the bandwidth
available to the TCP.

4. Changes done in existing algorithm:

4.1 Reno Friendly TCP Westwood based on
Router Buffer Estimation:

In this method, we represent an improved version of TCP
Westwood to overcome unfriendliness of TCP Westwood
according to buffer size of bottleneck link router. Here first
investigate the friendliness of TCP Westwood through
mathematical analysis using throughput model, then
estimate the buffer size of the bottleneck link router by
applying a bandwidth estimation technique known as RCE
(Residual Capacity Estimator) [5], and set the parameter
ssthresh.

4.1.1 Router buffer problem of TCP Westwood:
TCP Westwood uses the minimum RTT (min RTT) to set
the ssthresh, but this means that TCP Westwood does not
consider RTT oscillation which happens when network
begins to be congested. The fact that RTT relies on link
delay (approximately min RTT) and buffering delay means
that TCP Westwood performance will depend on buffer size
of a bottleneck link router.

In this research, researcher investigated the friendliness
between TCP Reno and TCP Westwood when they share the
same bottleneck link. They firstly pointed out a problem
through mathematical Analysis and simulations; the
friendliness between TCP Reno and TCP Westwood is
deteriorated according to buffer sizes of a bottleneck link
router. That is, when the buffer size is smaller than the
bandwidth delay product, throughput of TCP Reno is
degraded. On the contrary, when the buffer size is larger
than the bandwidth delay product, throughput of TCP
Westwood is degraded by the TCP Reno connection. Here
represent an improved version of TCP Westwood that
achieves friendliness to TCP Reno. Key points are as
follows (1) applying a bandwidth estimation technique, RCE,
along with the original rate estimation technique, (2)

estimating the buffer size of a bottleneck link router and
deriving compensation parameters to force friendliness
based on TCP throughput estimation models, and (3)
updating the ssthresh parameter with the compensated
RTTmin value. representd Simulation results show that
represent scheme indeed achieves friendliness with TCP
Reno versions without impact of router buffer sizes.

4.1.2 Throughput Ratio for Variants Buffer Sizes:
Here researcher evaluates the impact of buffer sizes on
friendliness. The network topology consists of two sender
hosts (S1 and S2), two receiver hosts (D1 and D2) and two
routers (R1 and R2). Host S1 uses TCP Westwood scheme
for data transmission, and host S2 using TCP Reno versions
shares the same link between routers R1 and R2. That is,
one connection of TCP Westwood scheme and another
connection of TCP Reno versions compete on the bottleneck
link. The bandwidth and the propagation delay of each link
between the routers and sender/receiver hosts is 100[Mbps]
and 5[ms]. The bandwidth and the propagation delay of the
link between R1 and R2 is 50[Mbps] and 35[ms]. The total
round trip delay between the sender hosts and the receiver
hosts is 90[ms]. Here when assume the packet size is 1500
byte, the bandwidth delay product becomes 375[packets].
Researcher use a Tail Drop discipline for buffer
management of router R1.Here researcher analyses
throughput ratio in the steady state between TCP Reno
versions and TCP Westwood scheme with variant buffer
sizes. From the calculated ratio of average throughput of
Reno and TCP Westwood it can be noted that TCP
Westwood achieves friendliness to TCP Reno versions only
when the buffer size of a bottleneck link router is set to
375[packets], that is the exact BDP in our simulation
condition. However, when the buffer size is not set to
375[packets], friendliness with TCP Reno versions is
deteriorated. other hand, it should be emphasized that TCP
Westwood scheme achieves friendliness with TCP Reno
versions for variant buffer sizes, because represented
scheme adapts the min RTT according to the buffer size of a
bottleneck link router.

From the calculated value of ratio we can see friendliness
between TCP Reno and TCP Westwood is deteriorated
according to buffer sizes of a bottleneck link router. That is,
when the buffer size is smaller than the bandwidth delay
product, throughput of TCP Reno is degraded. On the
contrary, when the buffer size is larger than the bandwidth
delay product, throughput of TCP Westwood is degraded by
the TCP Reno connection.

4.2 Improve Slow Start threshold and congestion
window:

TCP is able to work in wired, wireless as well as
heterogeneous network. However, the bandwidth of such
network may change frequently for many different reasons.
Therefore, TCP needs to probe the extra bandwidth of a
network to use the available bandwidth efficiently. Here
represented scheme that improves the slow start state and
the congestion avoidance state. Here represented scheme
dynamically sets the slow start threshold and adjusts the
congestion window in dynamic bandwidth environment.

4.2.1 Slow Start Threshold Estimation:

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1190

Here represented a slow start threshold estimation scheme
that improves TCP performance during the slow start state.
The ssthresh estimation dynamically adjusts the slow start
threshold. The ssthresh estimation combines the expected
rate and the actual rate to obtain an appropriate rate. Then
the appropriate rate is used to obtain an appropriate ssthresh.
The appropriate ssthresh can enhance TCP performance.
Assume that RTTmin is the minimum RTT measured by the
TCP source.

Figure. 4.1 Expected rate, appropriate rate, and actual rate with β = 0.3 [2]

We define the appropriate rate (AppR) as below, where
AppR with β = 0.3 and 0 < β < 1.

Expected Rate = cwnd/RTTmin
Actual Rate = cwnd/RTT
Appropriate Rate (AppR) = Expected Rate × β + Actual
Rate × (1 − β)

Figure 4.1 shows the relationships among the expected rate,
the actual rate, and the appropriate rate. If parameter β is
close to 1, the appropriate rate would get closer to the
expected rate. Therefore, the appropriate ssthresh would be
set too high. On the other hand, if parameter β is close to 0,
the appropriate ssthresh would be too conservative (small)
to degrade TCP performance. Here set appropriate rate
conservative by setting β to 0.3. If the appropriate rate is too
large, ssthresh would be set too high. This would cause
multiple packet loss if the exponential increase of cwnd
generates too many packets too quickly.

4.2.2 Appropriate Congestion Window:
Here represented scheme, set ssthresh to Actual Rate× (1−β)
×RTTmin/seg_size after the fast retransmission. When the
timeout occurs, ssthresh is set to AppR × RTTmin/seg_size.
In this state, it can detect the extra bandwidth via
consecutive observation RTT (COR). COR can observe
variations of RTT and determine if there are three
consecutive decreases of RTT or three consecutive increases
of RTT. The COR period is three (P = 3). For three
consecutive decreases of RTT, we calculate the variation as
follows [1]:

RTTdiff = RTTmax − RTTmin
Variation = RTTdiff/RTTmax,

Where RTTmax and RTTmin are the maximum and the
minimum RTT measured by the TCP source, respectively.
RTTdiff is the difference between RTTmax and RTTmin.

Here dynamically adjust cwnd in the congestion avoidance
state according to the degree of variation of RTT. For three
consecutive decreases of RTT, there define three cases of
the next cwnd below [2].

cwndnext =�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1, if Variation < 1/3

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 3, if 1/3 ≤ Variation < 2/3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 5, if Variation ≥ 2/3

�

For three consecutive increases of RTT, calculate the
variation in a same way as we calculated the variation for
three consecutive decreases of RTT. For three consecutive
increases of RTT, we define two cases of the next cwnd
below [2].

cwndnext=�
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1, if Variation < 1

2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , if Variation ≥ 1
2

�

4.3 Agile Probing:
Here represented [2] Agile Probing scheme improve the
performance of TCP during startup and over large leaky
pipe with the help of persistent non congestion detection
technique. Agile probing and PNCD are cooperated into
TCP Westwood to overcome the “slow” slow-start and
inefficient window increase. In slow-start, agile probing is
always used, while in congestion avoidance, it is invoked
only after PNCD detects persistent non congestion.

4.3.1 Agile Probing Mechanism:
Agile Probing uses Eligible Rate Estimation scheme to
adaptively and repeatedly reset the value of ssthresh. During
agile probing, when the current ssthresh is lower than
Eligible Rate Estimation, the sender resets ssthresh higher
accordingly, and increases cwnd exponentially. Otherwise,
cwnd increases linearly to avoid overflow. In this way, agile
probing probes the available network bandwidth for this
connection, and allows the connection to eventually exit
slow-start close to an ideal Window corresponding to its fair
share of bandwidth.

4.3.2 Persistent non congestion detection:
Here presented [2] a PNCD mechanism that aims at
detecting extra available bandwidth and invoking agile
probing accordingly. In congestion avoidance, a connection
monitors the congestion level constantly. If a TCP sender
detects persistent non congestion conditions, which indicates
that the connection may be eligible for more bandwidth, the
connection invokes agile probing to capture such bandwidth
and improve utilization of available bandwidth.

5. Conclusion and future research:
In this paper we represent the brief over view of older
version of TCP variants and their demerits. Here we also
represent new version of TCP called TCP Westwood that
improve the performance of TCP in lossy link where packets
are drops due to link error .we also seen the fairness and
friendliness issued of TCP Westwood. In presence of error

Vijay P Reshamwala, IJECS Volume 2 Issue 4 April, 2013 Page No. 1184-1191 Page 1191

rate it is difficult to establish the fairness between TCP
Westwood and other coexisting TCP Variants.

It was surveyed that TCP Westwood cannot efficiently use
large amount of bandwidth that suddenly becomes available
due to change in network conditions, random loss during
slow-start that causes the connection to prematurely exit the
slow-start phase.

There is a scope of improvement in refinement of bandwidth
estimation and filtering method in order to improve the TCP
Westwood friendliness in presence of error rate. ssthresh can
be adjusted adaptively so the slow start phase can increase
dynamically. It also improves the performance of TCP
Westwood in congestion avoidance phase when large
amount of bandwidth that suddenly become available.
Improve the performance of TCP Westwood in wireless
network where main reason for packet loss is link failure.

REFERENCES

[1] Shimaa Hagag, Ayman EI-Sayed(IEEE Senior Member) ,“Enhanced

TCP Westwood Congestion Avoidance Mechanism(TCP
WestwoodNew)”,International Journal Of Computer Application,
May-2012

[2] Neng-Chung Wang, Jong-Shin Chen, Yung-Fa Huang, Chi-LunChiou
“Performance Enhancement Of TCP in Dynamic Bandwidth Wired
and Wireless Network” Wireless Pers Commun, Springer
Science+Business Media, March-2008

[3] Kenshin Yamada, Ren Wang, M. Y. Sanadidi, Mario Gerla “TCP
With Sender-Side Intelligence to Handle Dynamic, Large, Leaky
Pipes” IEEE Communication Society, Feb-2005

[4] Kazumi Kaneko, Jiro Katto “Reno Friendly TCP Westwood Based
On Router Buffer Estimation”International Conference on Autonomic
and Autonomous System and International Conference on
Networking and Services, IEEE Computer Society, 2005

[5] Claudio Casetti, Mario Gerla, Saverio Mascolo, M.Y.Sanadidi,Ren
Wang “TCP Westwood: End-to-End Congestion Control For
Wired/Wireless Networks” Kluwer Academic Publisher, 2002.

[6] Ren Wang, Massimo Valla, M.Y.Sanadidi, Mario Gerla “Adaptive
Bandwidth Share Estimation in TCP Westwood” UCLA Computer
Science Department, Los Angeles, CA 90005, USA.

[7] S.Mascolo, C.Casetti, M.Gerla, S.S. Lee, M.Sanadidi “TCP
Westwood: Congestion control with faster recovery”

[8] Mario Gerla, M.Y.Sanadidi, Ren Wang, Andrea Zanella “TCP
Westwood: Congestion Window Control Using Bandwidth
Estimation”

[9] Kevin Fall and Sally Floyd “Simulation-based Comparisons of Tahoe,
Reno, and SACK TCP”

[10] M.Allman, V.Paxson “TCP Congestion Control, RFC-2581” Network
Working Group, April-1999

[11] S. Floyd , T. Henderson,U.C. Berkeley,” The NewReno Modification
to TCP's Fast Recovery Algorithm”, RFC 2582,April 1999

[12] Lawrence S. Brakmo, Sean. O’Malley, Larry L.Peterson, “TCP Vegas:
New Techniques for Congestion Detection and
Avoidance”,Department of Computer Science The University of
Arizona Tucson,AZ 85721, February 16,1994

[13] http://www.cs.ucla.edu/~nrl/hpi/tcpw/tcpw_ns2

