

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 1 January 2015, Page No. 10116-10120

Miss. Bharti D. Wanjari1 IJECS Volume 4 Issue 1 January, 2015 Page No.10116-10120 Page 10116

Review on Xml Tree Pattern Matching Using Holistic Algorithms
Miss. Bharti D. Wanjari1 Professor Mr. Kapil N. Hande 2

1
RTMNU University, PBCE Nagpur, Maharashtra, India.

1
Bharti.wanjari29@gmail.com

2RTMNU University, Department of Computer Science and Engineering,

PBCE Nagpur, Maharashtra, India.
2
kapilhande@gmail.com

Abstract: The extensible markup language XML has recently to come into view as a new standard for information representation and

exchange on the internet. With XML becoming ever-present language for data interoperability purposes in various domains, efficiently

querying XML data is a critical issue. XML has become a practice standard to store, share and exchange business data across similar and

dissimilar platforms. The interoperability is possible though XML. As organizations are generating large amount of data in XML format,

there is a need for processing XML tree pattern queries. This paper presents survey on some developments in the field of XML tree pattern

query processing, especially focusing on holistic approaches. XML tree pattern query processing is a research flow within XML data

management that focuses on efficient Tree Pattern Query (TPQ) answering. The existing holistic algorithms for XML tree pattern matching

queries display suboptimmality problem as they consider intermediate results before taking final results. This causes suboptimal

performance. This suboptimality is overcome by using TreeMatch algorithm. This paper presents the overview of prototype application that

makes use of efficient Dewey labeling scheme to overcome suboptimality with TreeMatch algorithm.

Keywords- XML, Query Processing and optimization, Holistic tree pattern\ Matching

.

I. Introduction
With XML becoming omnipresent language for data

interoperability purposes in various domains, efficiently

querying XML data is a extremely important issue. XML is the

universal format for structured documents data on web. XML

documents are used to carry over data from one place to

another often over the Internet. XML is extensible markup

language much like Hyper Text Markup Language (HTML).

XML is not a replacement for HTML. XML is more

manageable and adaptable than HTML. XML was designed to

transfer data not to display data. XML and HTML were

designed with different goals: XML was designed to store,

transport and display required information. HTML was

designed to display data, with focus on how data looks HTML

is about displaying information, while XML is about

transferring information.

An XML document consists of nested elements enclosed

by user-defined tags shows an example of an XML document

named “pubctn.xml”, which contains some publication

information. The hierarchical structure of an XML documents

can be modeled as a tree. Figure 2 is the tree representation of

the XML file. The XML documents on the Internet are forest

of XML trees and we call it an XML database.

<?xml version="1.0" ?>

<publication>

<journal title="DBMS">

<editor>Jack</editor>

<article>

<title>

 Index Construction

</title>

<author>Smith</author>

</article>

</journal>

<journal title="Algorithm">

</journal>

</publication>

Due to the business alliance and for the purpose of

adjustability organizations are storing data in XML format.

This has become a common practice as XML is easily

transported and irrespective of platforms in which applications

were developed, they can share data through XML file format.

Such XML files are also approved using DTD or Schema.

XML parsers are available in all languages that ease the usage

of XML programmatically. Besides XML is tree based and it is

convenient to handle easily using Document Object

Model(DOM) API. XML tree pattern queries are to be

processed efficiently as that is the main operation of XML

data.

Figure 1: Tree representation of XML Document

XML has become the practice standard for storing and

moving semi structured data due to its simplicity and

flexibility, with XPath[1] and XQuery[2] as the standard query

http://www.ijecs.in/
mailto:1Bharti.wanjari29@gmail.com
mailto:kapilhande@gmail.com

Miss. Bharti D. Wanjari1 IJECS Volume 4 Issue 1 January, 2015 Page No.10116-10120 Page 10117

languages. XML documents have tree structure, where

members (tags) are internal tree nodes, and attributes and text

values are leaf nodes. Information may be converted both in

structure and content, and query languages need the

expressional power to specify both.

With the rapidly increasing popularity of XML for data

representation, there is a lot of concern in query processing

over data that conforms to a tree-structured data model. An

XML query pattern commonly can be represented as a rooted,

labeled tree (Twig), for example Fig 2 shows an example

XPath query:

Book [title = “JAVA”] // author [. = “chan”]

Such a complex query tree pattern can be naturally

decomposed into a set of basic P-C and A-D relationship

between pairs and nodes [4]. The above example query are the

ancestor-descendent relationship (book, author) and the parent-

child (book, title) and (title, JAVA) and (author, Chan).

 Book

 Title author

 Java Chan

Figure 2: XPath Query

In practice, XML data may be complicated and have deep

nested elements. Thus, very huge, efficiently finding all twig

patterns in an XML database is a major interest of XML query

processing. In the last few years, many algorithms ([4],[5])

have been proposed to match such twig patterns. These

approaches (1) first develop a labeling scheme to capture the

structural information of XML documents, and then after (2)

perform tree pattern matching based on labels alone without

traversing the original XML documents. For finding the first

sub- problem of designing a proper labeling scheme, the

former methods use a tree-traversal order or textual positions

of start and end tags (e.g. region encoding [6]) or path

expressions(e.g. Dewey ID [7]) or prime numbers. By applying

these labeling schemes, one can determine the relationship

(e.g. ancestor-descendant) between two elements in XML

documents from their labels alone.

We present a fast tree matching algorithm called TreeMatch

that can directly find all matching’s of a tree pattern in one

step. The only requirement for the data source is that the

matching elements of the non-leaf pattern nodes do not contain

sub-elements with the same tag. There are at least two

advantages of TreeMatch. First, the TreeMatch algorithm does

not need to decompose the query tree pattern, as it matches the

pattern against the data source directly. Therefore, it does not

produce any intermediate results and does not need the

merging process. Second, the final results are compactly

encoded in stacks and explicit representation of the results,

either as a tree or a relation with each tuple representing one

matching, can be generated efficiently.

The rest of the paper is organized as follows:

We first formally define the TP and related concepts in

section II. Section III reviews the literature survey on different

Xml tree pattern algorithm that gives insights into the research

topic. Section IV gives the details of the holistic algorithm and

comparative analysis of the different holistic algorithm while

the section V conclude the paper which followed by references.

II. Background

In this section we first formally define all the concept used in

this paper.

1) XML Document

XML is known to be a simple and very flexible text format. It

is essentially employed to store and transfer text-type data. The

content of an XML document is encapsulated within elements

that are defined by tags. These elements can be seen as a

hierarchy organized in a treelike structure.

2) Data Tree Collection

An XML document considered as a set of fragments may be

modeled as a data tree collection (also named forest in TAX),

which is itself a data tree.

3) Tree Pattern Matching

Matching a TP p against a data tree t is a function f : p-> t that

maps nodes of p to nodes of t such that.

 structural relationships are preserved, i.e., if nodes (x,

y) are related in p through a parent-child relationship,

denoted PC for short or by a simple edge/in XPath

(respectively, an ancestor-descendant relationship,

denoted AD for short or by a double edge // in XPath),

their counterparts (f(x), f(y)) in t must be related

through a PC (respectively, an AD) relationship too;

 formula F of p is satisfied.

The output of matching a TP against a data tree is termed a

witness tree in TAX.

III. XML Tree pattern matching

algorithms

XML query contains two parts one is value match and

another one is tree match. The above XPath query (fig 2)

contains „XML‟ is a value match and another is a twig match.

Labeling and Computing is the main view of the twig pattern,

labeling assign each element in the XML document tree an

integer label to capture the structural information of documents

and computing use labels to answer the twig pattern without

traversing the original document. Mainly there are two labeling

schemes, such as containment labeling schemes and Dewey ID

labeling schemes. Several algorithms based on the containment

labeling scheme have been developed to process twig queries.

In the environment of semi-structured and XML

databases, tree-based query pattern is a very practical and

important class of queries. The recent papers (e.g. [9,10]) are

proposed to efficiently process an XML twig pattern. Lore

DBMS [11] and Timber [12] systems have considered various

appearance of query processing on such data and queries. XML

data and various issues in their storage as well as query

processing using relational database systems have recently

been considered in [7, 8]. In paper [11], a new holistic

algorithm, called OrderedTJ, is proposed to process order-

based XML tree query. In paper [12], an algorithm called

TwigStackListNot is proposed to handle queries with negation

function. Chen et al [13] pro- posed different data streaming

schemes to boost the holism of XML tree pattern processing.

They showed that bigger optimal class can be accomplish by

refined data streaming schemes. In addition, Twig2Stack [14]

is proposed for answering generalized XML tree pattern

queries. Note the difference between generalized XML tree

pattern and extended XML tree pattern here. Generalized XML

tree pattern is defined to include optional axis which models

the expression in LET and RETURN clauses of XQuery

statements. But extended XML tree pattern is defined to

include some intricate conditions like negative function,

wildcard and order restriction.

Miss. Bharti D. Wanjari1 IJECS Volume 4 Issue 1 January, 2015 Page No.10116-10120 Page 10118

In addition the holistic algorithms, there are other

approaches to match an XML tree pattern, such as ViST ([15])

and PRIX ([16]), which transform an XML tree pattern match

to sequence match. Their algorithms mainly focus on ordered

queries, and it is non- trivial to extend those methods to

manage unordered queries and extended queries studied in this

article. Note that the paper [17] made exhaustive experiments

to compare different XML tree query processing algorithm and

concluded that the family of holistic processing methods,

which provides performance guarantees, is the most strong

approach. From the aspect of theoretical research about the

optimality of XML tree pattern matching, Choi et al. [7]

developed theorems to prove that it is impossible to devise a

holistic algorithm to guarantee the optimality for queries with

any fusion of P-C and A-D relationships.

 Most of these works created on some labeling scheme of

XML elements to facilitate the verification of the structural

relationship. The most commonly used labels are the

containment and prefix labeling scheme. The containment

labeling was introduced by Zhang et al. [18] to facilitate the

containment queries. The verification of ancestor -descendant

structural relationship is of the same complexity as that of

parent-child relationship by using regional labeling. Dewey ID

is the first example of using prefix labeling to represent XML

data. It can be used to preserve the path information during

query processing. Recent work of Lu at el.[16] utilize the

extended Dewey encoding which encodes path information

including not only the element IDs but also the element names.

The following sections going to comparative analysis

about some existing tree pattern matching techniques in

specifically TwigStack, TJFast with TreeMatch [19][21][22].

IV. Different Holistic Algorithm for XML

query processing
The following sections we have going to comparative

analysis about few existent tree pattern matching techniques in

particularly the holistic algorithm on real-life and synthetic

data sets, including TreeMatch [22], TwigStack [19], TJFast

[21].

I. TwigStack Algorithm

TwigStack [19] was the first holistic twig join algorithm.

Using PathStack on each root-to-leaf path in a twig query and

merging the matches, may lead to many useless intermediate

results, because matches need not be part of complete matches.

TwigStack improved on this, and achieved O(I + O)

complexity for queries with a-d edges only. When all edges in

query pattern are ancestor – descendant (A-D) relationships,

Twigstack ensures that each root–to–leaf intermediate solution

is merge – joinable. TwigStack has been proved to be I/O

optimal in terms of output sizes for queries with only A-D

edges, their algorithms still cannot control the size of

intermediate results for queries with parent-child (P-C) edges.

To get a better understanding of this limitation, let us take an

experimented with TreeBank datasets tested three twig queries

patterns, each of which contains at least one Parent-Child (P-C)

edge. TwigStack operates two steps: 1. a list of intermediate

path solutions is output as intermediate results and 2. the

intermediate path solutions in the first step are merge-joined to

produce the final solutions.

Table 1: number of intermediate path solutions produced by

TwigStack against treebank data

Query Output

result

Useful

path

Useless

path

VP[./DP]//PRP_DOLLER 10673 6 98.9%

S[./JJ]NP 70899 11 99.9%

S[.//VP/IN]//NP 703291 22565 96.8%

An immediate observation from the table 1 is that

TwigStack resuls many intermediate paths that are not merge-

joinable. For all three queries, more than 95% intermediate

paths produced by TwigStack in the first step are “useless” to

final answers [23]. The main reason for such bad performance

is that in the TwigStack, it assumes that all edges in queries are

A-D relationships and therefore output many useless

intermediate results when queries contain P-C relationships.

TwigStack cannot answer queries with wildcards in branching

nodes.

For example in Fig 3, the parent of B should be an ancestor

of C

*

B C

Figure 3: queries with wildcard

II. TJFast Algorithm

I have presented a holistic algorithm for answering XML

twig queries in previous sections. Interestingly, that algorithm

uses the same containment labeling scheme. While the

containment scheme preserves the positional information

within the hierarchy of an XML document, we observe that

this is not the only labeling scheme that can be used for XML

twig query processing. Certainly, there are at least two

limitations in the containment scheme.

1. The information contained by a single containment

label is very limited. For example, we cannot get the

path information from any single containment label.

2. While wildcard steps in XPath are commonly used

when element names are unknown or do not matter.

The containment labeling scheme is complex to answer

queries with wildcards in branching nodes. For example,

consider an XPath: “//x/*/[y]/z”. where “*” denotes a wildcard

symbol which can match any single element. The containment

labels of x, y and z do not provide enough information to

figure out whether they match the query or not. This is because

even if y and z are descendants of x and their level difference

with x is 2, y and z may not be query answers, as they do not

have the common parent.

 (a)query (b)containment (c)Dewey ID

Figure 4: wildcard query processing

Miss. Bharti D. Wanjari1 IJECS Volume 4 Issue 1 January, 2015 Page No.10116-10120 Page 10119

However, Dewey ID labeling scheme can efficiently

overcome the above two limitations. In Dewey ID, each

element is labeled by a vector to show the path from the root to

this element. This example shows that unlike containment, the

Dewey ID labeling scheme can provide path information and

thus support the evaluation of queries with wildcards in

branching nodes. TJFast outputs one useless intermediate path

and it is outputs the path solution for all nodes in query. It does

not produce the individual solution for each node when there

are multiple return nodes in a query. TJFast cannot work with

ordered restriction and negation function.

III. TreeMatch Algorithm

Previous XML tree pattern matching algorithms do not fully

exploit the “optimality” of holistic algorithms. TwigStack

guarantees that there is no useless intermediate result for

queries with only AD relationships. Therefore, TwigStack is

optimal for queries with only A-D edges. Previous algorithms

focus on XML tree pattern queries with only P-C and A-D

relationships. Little work has been done on XML tree queries

which may contain wildcards, negation function and order

restriction, all of which are frequently used in XML query

languages such as XPath and XQuery. In this analysis, we take

an XML tree pattern with negation function, wildcards and/or

order restriction as extended XML tree pattern. Fig 5, for

example, shows four extended XML tree patterns. Query (a)

includes a wildcard node “*”, which can match any single node

in an XML database. Query (b) includes a negative edge,

denoted by “¬”.

Here we have three categories of XML tree patterns (twigs)

in Fig. 5.

 Q/,//,* means queries with P-C,A-D relationships and

wildcards. Here "/" denotes Parent-Child (P-C)

relationship, "//" denotes Ancestor-Descendant (A-D)

relationship and a wildcard “*” means it can match

any single node in an XML database.

 Q/,//,*,< means queries with P-C, A-D relationships,

wildcards and order restriction. Here “<” shows that

the nodes are ordered.

 Q/,//,*,<,┐ means queries with P-C, A-D

relationships, wildcards, order restriction and

negation function. Here "┐" represents negation

function.

Figure 5: Examples for XML tree Patterns

The TreeMatch algorithm is proposed to achieve optimal

query classes. It uses a concise encoding technique to match

the outputs and also reduces the useless intermediate outputs.

Most XML query processing algorithms on XML documents

rely on certain labeling schemes, such as region encoding

scheme [18], prefix scheme [24], ORDPATH [25], Dewey

scheme [7]. In this paper, we use the Dewey labeling scheme,

proposed in paper [7], to assign each node in XML documents

a sequence of integers to capture the structure information of

documents. Dewey labeling scheme is a derived scheme of the

prefix labeling scheme. In the prefix labeling scheme, the root

is labeled by an empty string and for a non-root element u,

label (u) = label (v).n, where u is the nth child of v. In Dewey

labeling scheme [7], each label gives complete information

about ancestors‟ names and labels. For example, given an

element e with label “1.2.3”, prefix labeling schemes can tell

us parent(e)=“1.2” and grandparent(e)=“1”, but Dewey

labeling scheme can also tell us the tag name of elements, say,

tag(e)=„X‟, tag(parent(e))=„Y‟ and tag(grandparent(e))=„Z ‟.

In order to achieve this goal, paper [9] uses module function to

encode the element tag information to prefix labels, and use

finite state transducer (FST) to decode the type’s information

for a single extended Dewey label. The complete path

information in Dewey labels enables holistic algorithms to scan

only leaf query nodes to answer an XML query.

Through this survey, we illustrate two differences between

TJFast and TreeMatch. (1) TJFast outputs one useless

intermediate and TreeMatch uses the bitVector encoding to

solve this problem. (2) TJFast outputs the path solution for all

nodes in query, but TreeMatch only outputs nodes for return

nodes (i.e. node B in the query) to reduce I/O cost.

Analogous analysis table of previous algorithms with

TreeMatch

Table 2: overall summary of algorithm analysis

Algorithm Labeling

scheme

Optimality Query Result

TwigStack Containm

ent

optimal in

terms

of output

sizes

and not

optimal

for PC

Unorder

ed

Many

useless

intermediat

e results

when

queries

contain P-

C

relationshi

ps

TJfast Dewey

Labeling

Not fully

optimal

Unorder

ed

one useless

intermediat

e

path and it

is outputs

the

path

solution for

all nodes

in query

TreeMatch Dewey

labeling

and

bitvector

Fully

optimal

Wildcar

d,

Negatio

n, Order

restricti

on

No useless

path

Based on previous detailed discussions, table 2 illustrates the

analogous analysis of previous tree pattern matching

algorithms with TreeMatch with the key factors of labeling

schemes, optimality, query and result.

V. Conclusion

Miss. Bharti D. Wanjari1 IJECS Volume 4 Issue 1 January, 2015 Page No.10116-10120 Page 10120

In this paper, we proposed the problem of XML tree pattern

matching and surveyed some recent works and algorithms. The

previous twig pattern matching algorithms (TwigStack,

TwigStackList, OrderedTJ, and TJFast) requires bounded main

memory for small queries and requires more features than

TreeMatch algorithm. TreeMatch has an overall good

performance in terms of labeling schemes, optimality, query

processing, result (table 2) and the ability to process extended

XML tree patterns (twigs). TreeMatch to achieve such optimal

query classes so, from this points we can say that TreeMatch

twig pattern matching algorithm can answer complicated

queries and has good performance.

References
[1] A. Berglund, S. Boag, and D. Chamberlin. XML path

language (XPath) 2.0. W3C Recommendation 23 January

2007 http://www.w3.org/TR/xpath20/.

[2] S. Boag, D. Chamberlin, and M. F. Fernandez. Xquery

1.0: An XML query language. W3C Working Draft 22

August 2003.

[3] Marouane Hachicha and Je´ roˆme Darmont,

Member, IEEE Computer Society “A Survey of

XML Tree Patterns” IEEE Transactions On

Knowledge And Data Engineering Vol:25 No:1

Year 2013

[4] H. Jiang, H. Lu, and W. Wang. “Efficient processing

of XML twig queries with OR-predicates”. In Proc.

of SIGMOD Conference, pages 274{285, 2004.

[5] H. Jiang et al. “Holistic twig joins on indexed XML

documents”. In Proc. of VLDB, pages 273{284,

2003.

[6] N. Bruno, D. Srivastava, and N. Koudas. “Holistic

twig joins: optimal XML pattern matching”. In

Proc. of SIGMOD Conference, pages 310{321,

2002.

[7] I. Tatarinov, S. Viglas, K. S. Beyer, J. , E. J.

Shekita, and C. Zhang:. “Storing and querying

ordered XML using a relational database system”.

In Proc. of SIGMOD, pages 204{215, 2002.

[8] X. Wu, M. Lee, and W. Hsu. “A prime number

labeling scheme for dynamic ordered XML trees”.

In Proc. of ICDE, pages 66{78, 2004.

[9] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni.

“Efficient processing of ordered XML twig pattern

matching”. In DEXA, pages 300{309, 2005.

[10] T. Yu, T. W. Ling, and J. Lu. Twigstacklistnot: “A

holistic twig join algorithm for twig query with not-

predicates on xml data”. In DASFAA, pages

249{263, 2006.

[11] R. Goldman and J. Widom. Dataguides: “Enabling

query formulation and optimization in

semistructured databases”. In Proc. of VLDB, pages

436{445, 1997.

[12] H. V. Jagadish and S. AL-Khalifa. Timber: “A

native XML database”. Technical report, University

of Michigan, 2002.

[13] T. Chen, J. Lu, and T. W. Ling. “On boosting

holism in xml twig pattern matching using structural

indexing techniques”. In SIGMOD, pages 455{466,

2005.

[14] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D.

Agrawal, and K. S. Candan.Twig2stack: Bottom-up

processing of generalized-tree-pattern queries over

xml document. In Proc. of VLDB Conference, pages

19{30, 2006.

[15] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: “A

dynamic index method for querying XML data by

tree structures”. In SIGMOD, pages 110{121, 2003.

[16] P. Rao and B. Moon. PRIX: “Indexing and querying

XML using prufer sequences”. In ICDE, pages

288{300, 2004.

[17] M. Moro, Z. Vagena, and V. J. Tsotras. “Tree-

pattern queries on a lightweight XML processor”. In

VLDB, pages 205{216, 2005.

[18] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and

G. M. Lohman. “On supporting containment queries

in relational database management systems”. In

Proc. of SIGMOD Conference, pages 425{436,

2001.

[19] N. Bruno, D. Srivastava, and N. Koudas, Holistic

twig joins: optimal XML pattern matching, In

Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2002, pp. 310–

321.

[20] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient

processing of ordered XML twig pattern matching.

In DEXA, pages 300–309, 2005.

[21] J. Lu, T. Chen, and T. W. Ling. TJFast: Efficient

processing of XML twig pattern matching.

Technical report, National university of Singapore,

2004.

[22] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended

xml tree pattern matching: theories and algorithms.

IEEE transactions on knowledge and data

engineering, vol.23, no. 3, march 2011

[23] Lu Jiaheng, “Efficient Processing Of Xml Twig

Pattern Matching”, doctoral diss., Shanghai Jiao

Tong University, China, 2006

[24] Q. Li and B. Moon. “Indexing and querying XML

data for regular path expressions”. Proceedings of

the 27th VLDB Conference, pp361-370, 2001.

[25] P. O‟Neil, E. O‟Neil, S. Pal, I. Cseri, G. Schaller,

and N. Westbury.ORDPATHs: Insert-friendly XML

node labels. In SIGMOD, pages 903–908, 2004.

