
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 13 Issue 12 December 2024, Page No. 26682-26687

ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i12.4940

Dr. M. Jaithoon Bibi., IJECS Volume 13 Issue 12 December, 2024 Page 26682

Lambda Authorizer Benchmarking Tool with Aws Sam And Artillery

Framework

Dr. M. Jaithoon Bibi 1, Sharmila M 2, Vishnuraj R 3, Madhumitha A.H 4

1 Assistant Professor Department of Computer Science with Cognitive Systems Sri Ramakrishna College of

Arts and Science Tamil Nadu, India

2 Student of Computer Science with Cognitive System Sri Ramakrishna College of Arts and Science Tamil

Nadu, India

3 Student of Computer Science with Cognitive Systems Sri Ramakrishna College of Arts and Science Tamil

Nadu, India

4 Student of Computer Science with Cognitive System Sri Ramakrishna College of Arts and Science Tamil

Nadu, India

Abstract

This paper proposes a novel Lambda Authorizer Benchmarking Tool utilizing AWS Serverless Application

Model (SAM) and Artillery framework. The tool evaluates the performance of serverless functions

implementing Lambda Authorizers. We focus on three key performance parameters: cold start behaviour,

programming language runtimes, and authorization types (e.g., token-based, claim-based). By employing

load testing with Artillery, the tool measures the impact of these factors on authorization processing speed

and resource consumption. The findings from the benchmarking experiments offer valuable insights for

developers building secure and cost-effective serverless APIs with Lambda Authorizers. The tool empowers

and developers to make informed decisions regarding programming language selection, authorization

strategy, and optimization techniques for their serverless applications.

Keywords: Serverless computing, AWS Lambda, Lambda Authorizer, Performance Benchmarking, Load

Testing, AWS SAM, Artillery framework, Cold Start Time, Programming Language Runtime, Authorization

Strategy

1. Introduction

As serverless APIs gain traction, securing them

becomes paramount. Lambda Authorizers, custom

functions acting as API gatekeepers in AWS

Lambda, enhance security but can introduce

performance overhead due to cold starts and

authorization processing. To address this

knowledge gap, this paper proposes a novel

Lambda Authorizer Benchmarking Tool utilizing

AWS SAM and the Artillery framework. This tool

evaluates the performance impact of cold starts,

programming language runtimes, and

authorization types, empowering developers to

build secure and cost-effective serverless APIs.

2. Literature Review

Großmann M, Ioannidis C, Le DT (2019)

Applicability of serverless computing in fog

computing environments for iot scenarios in:

Proceedings of the 12th IEEE/ACM International

Conference on Utility and Cloud Computing

Companion (UCC ‘19 Companion), 29–34.

Association for Computing Machinery, New York.

Boza EF, Abad CL, Villavicencio M, Quimba S,

http://www.ijecs.in/

Dr. M. Jaithoon Bibi, IJECS Volume 13 Issue 12 December, 2024 Page 26683

Plaza JA (2017) Reserved, on demand or

serverless: Model-based simulations for cloud

budget planning In: 2017 IEEE Second Ecuador

Technical Chapters Meeting (ETCM), 1–6.

Villamizar M, Garcés O, Ochoa L, Castro H,

Salamanca L, Verano M, Casallas R, Gil S,

Valencia C, Zambrano A, Lang M (2017) Cost

comparison of running web applications in the

cloud using monolithic, microservice, and aws.

Hong S, Kim Y, Nam J and Kim S. (2024). On the

Analysis of Inter-Relationship between Auto-

Scaling Policy and QoS of FaaS Workloads.

Sensors. 10.3390/s24123774. 24:12. (3774).

Online publication date: 10-Jun-2024.

3. Methodology

This section dives into the development of the

Lambda Authorizer Benchmarking Tool,

highlighting the roles of AWS SAM and the

Artillery framework.

a) AWS SAM: Simplifying Serverless

Infrastructure Definition

The tool leverages AWS SAM (Serverless

Application Model) to define the infrastructure for

itself. SAM simplifies this process by offering a

template language specifically designed for

serverless applications. The template will

encompass the following components

b) Lambda Function:

This defines a Lambda function mimicking the

target Lambda Authorizer under test. The template

allows configuring different programming

languages and authorization logic within this

function.

c) API Gateway:

An API Gateway endpoint will be created to

receive simulated API requests for authorization

processing.

d) Artillery Framework: Conducting

Rigorous Load Testing

The Artillery framework is integrated to conduct

load testing on the simulated Lambda Authorizer.

This allows us to simulate real-world scenarios

with varying request volumes and user

concurrency. The tool configuration will specify:

e) Test Scenarios:

Multiple test scenarios will be defined, each

focusing on a specific performance parameter (e.g.,

cold start behavior, language runtime).

f) Request Characteristics:

Each scenario will define the characteristics of the

simulated API requests, including the

authorization type (token-based, claim-based) and

any additional data relevant to the testing focus.

g) Load Patterns:

Configurable load patterns will be used to

simulate different user access patterns (e.g.,

constant load, spike in traffic).

Performance Parameters under Scrutiny

The tool will capture and analyze several key

performance indicators (KPIs) to provide a

comprehensive picture of the Lambda Authorizer's

performance:

a) Cold Start Time:

This metric measures the time it takes for the

simulated Lambda Authorizer function to

initialize after a period of inactivity. We will

capture cold start times for the first few requests

in each test scenario.

b) Authorization Processing Latency:

This metric measures the time taken by the

Lambda Authorizer function to process a

single authorization request. This will be

calculated by subtracting the cold start

Dr. M. Jaithoon Bibi, IJECS Volume 13 Issue 12 December, 2024 Page 26684

time (if applicable) from the total request

processing time.

c) Resource Utilization:

The tool will monitor resource consumption

metrics like memory usage and CPU utilization

during the load testing process. This provides

insights into the resource demands of different

authorization logic implementations.

Data Collection and Analysis

The tool will collect data from all the

aforementioned metrics during the load testing

runs. This data will be analyzed to identify

performance trends and evaluate the impact of

different factors like programming language

runtimes, authorization types, and cold starts on

the overall performance of the Lambda Authorizer.

The results will be presented visually (e.g., charts,

graphs) for easy comprehension.

4. Result:

Evaluating Lambda Authorizer Performance

This section presents the key findings from the

performance evaluation conducted using the

Lambda Authorizer Benchmarking Tool. The tool

analyzed the impact of various factors on the

Lambda Authorizer performance, focusing on:

Cold Start Time:

Python: 250 ms

Node.js: 300 ms

Go: 180 ms

Processing Latency:

Python: 12 ms

Node.js: 15 ms

Go: 10 ms

Resource Utilization:

Impact of Programming Language Runtimes

We tested the Lambda Authorizer function using

different programming languages commonly used

for serverless development (e.g., Python, Node.js,

Go). The results are summarized in the following

table and graph:

5. Discussion

Implications for Developers

a) Data-Driven Language Selection:

The benchmarking tool empowers developers to

make informed language choices for their Lambda

Authorizers. By understanding the trade-offs

between cold start times, processing latency, and

resource efficiency (refer to your specific

findings), developers can select the language that

best aligns with their application's needs. This

enables a data-driven approach to language

selection, considering factors like expected traffic

patterns and desired performance characteristics.

b) Balancing Performance and Security:

The findings highlight the importance of striking a

balance between performance and security

considerations when choosing an authorization

type. For APIs with high-traffic volumes, token-

based authorization might be preferable for faster

processing. However, claim-based authorization

might be necessary for scenarios requiring more

granular access control. This reinforces the need

for developers to weigh the trade-off between

speed and security based on their specific use case.

c) Optimization Techniques:

Regardless of the language or authorization type

chosen, developers should explore optimization

techniques like code profiling and library selection

to further improve the performance of their

Lambda Authorizers. This emphasizes the

importance of ongoing optimization efforts to

ensure the Lambda Authorizers function

efficiently, even after the initial language selection

is made.

Limitations of the Tool and Methodology

Dr. M. Jaithoon Bibi, IJECS Volume 13 Issue 12 December, 2024 Page 26685

a) Limited Scope:

The tool currently focuses on specific

performance parameters and authorization types.

Future iterations could incorporate additional

factors like integration with external services or

varying request payloads to provide a more

comprehensive picture. This acknowledges that

real-world serverless applications might interact

with external services or handle diverse request

payloads, and the tool could benefit from

including these aspects in future iterations.

b) Real-World Scenario Simulation:

While the tool simulates load testing, it might not

perfectly capture the complexities of real-world

traffic patterns. Developers should consider

additional testing in production environments for a

more holistic understanding. This highlights the

limitation of simulated load testing and

emphasizes the importance of real-world testing to

ensure the Lambda Authorizers perform well

under actual traffic conditions.

c) Language Selection Bias:

The choice of languages tested might influence

the results. Expanding the language pool in future

iterations could provide a broader perspective for

developers. This acknowledges that the tool's

findings might be influenced by the specific

languages chosen for testing, and including a

wider range of languages in future iterations could

provide more comprehensive insights.

Future Directions:

Expanding the Benchmarking Scope:

The tool can be extended to incorporate additional

performance metrics like network latency or

memory allocation patterns. It could also explore

different authorization mechanisms beyond token-

based and claim-based approaches (e.g., OAuth,

IAM policies). This highlights potential areas for

improvement in the tool's scope, allowing for a

more well-rounded analysis of Lambda Authorizer

performance.

Real-World Traffic Simulation:

Integrating the tool with traffic shaping tools

could allow for simulating more realistic user

access patterns, providing developers with a more

production-like performance evaluation. This

suggests an improvement to the tool's testing

capabilities, allowing for simulations that better

reflect real-world traffic patterns.

Security Analysis Integration:

The tool could be integrated with security analysis

frameworks to assess the potential security

implications of different language choices or

authorization strategies. This proposes a valuable

addition to the tool, enabling developers

6. Conclusion

This research leveraged the Lambda Authorizer

Benchmarking Tool to analyze performance under

various conditions. The findings offer valuable

insights for developers: language choice (e.g., Go

for speed) significantly impacts performance,

token-based authorization is faster than claim-

based for high-traffic scenarios, and optimization

techniques always improve performance. The tool

empowers developers by providing data-driven

guidance for building secure and performant

serverless APIs. Future directions include

expanding the scope of analyzed metrics,

simulating real-world traffic patterns, integrating

security analysis, and incorporating a wider range

of languages. By implementing these

improvements, the tool can become an even more

powerful resource for developers.

References

1. Mohammed, C.M., Zeebaree, S.R., et al.:

Sufficient comparison among cloud

computing services: IAAS, PAAS, and

SAAS: A review. Int. J. Sci. Bus. 5(2), 17–

30 (2021)

2. Shafiei, H., Khonsari, A., Mousavi, P.:

Serverless computing: a survey of

opportunities, challenges, and applications.

ACM Comput. Surv. 54(11s), 1–32 (2022)

3. Sbarski, P., Kroonenburg, S.: Serverless

Architectures on AWS: With Examples

using Aws Lambda. Simon and Schuster

(2017)

4. Rajan, R.A.P.: Serverless architecture-a

revolution in cloud computing. In: 2018

Tenth International Conference on

Advanced Computing (ICoAC), pp. 88–93.

IEEE (2018)

Dr. M. Jaithoon Bibi, IJECS Volume 13 Issue 12 December, 2024 Page 26686

5. Copik, M., Kwasniewski, G., Besta, M.,

Podstawski, M., Hoefler, T.: Sebs: A

serverless benchmark suite for function-as-

a-service computing. In: Proceedings of

the 22nd In- ternational Middleware

Conference, pp. 64–78 (2021)

6. Deng, R.: Benchmarking of serverless

application performance across cloud

providers: An in-depth understanding of

reasons for differences (2022)

7. Patterson, S.: Learn AWS Serverless

Computing: A Beginner’s Guide to Using

AWS Lambda, Amazon API Gateway, and

Services from Amazon Web Services,

Packt Publishing Ltd. (2019)

8. Grumuldis, A.: Evaluation of “serverless”

application programming model: How and

when to start serverles (2019)

9. Abbas, R., Sultan, Z., Bhatti, S.N.:

Comparative analysis of automated load

testing tools: Apache jmeter, microsoft

visual studio (tfs), loadrunner, siege, pp.

39–44. In: 2017 International Conference

on Communication Technologies

(comtech). IEEE (2017)

Biography

Dr. M.Jaithoon Bibi, Assistant

Professor, Sri Ramakrishna College

of Arts and Science, Coimbatore.

She received her M.Phil in the field

of Data Mining from Sri Ramakrishna College of

arts and Science for Women, Coimbatore.

Completed PhD in the field of Data mining from

PSGR Krishnammal College for women,

Coimbatore. Her area of interest is data analysis

and predictive models to reveal patterns and trends

in data from exiting data sources. Her teaching

experience is 4 year. She has published 11 research

papers in international journals, Scopus, Web of

Science and conferences in the area of data mining.

She attended various international level

conferences, seminars, workshops and technical

symposium. She is a member of IAENG

(International Association of Engineering. She has

authored a book on Infrastructure Management

MCQ’s, API Creation: For Artificial Intelligence

and Data Story telling with Tableau Public.

Vishnuraj is a budding

technologist currently pursuing a

Bachelor's degree in Computer

Science with Cognitive Systems

at Sri Ramakrishna College of Arts & Science.

His academic journey has been a thrilling

exploration of how computer science intertwines

with cognitive principles to create innovative

solutions and smarter systems. As a self-starter

and a quick learner, he thrives in environments

where he can apply his technical skills and

knowledge to real-world challenges. His passion

for new technologies drives him to constantly seek

out and embrace the latest trends and

advancements in the tech world.

Madhumitha A.H is a budding

technologist currently pursuing a Bachelor's degree

in Computer Science with Cognitive Systems at Sri

Ramakrishna College of Arts & Science. Her

academic journey has been a thrilling exploration of

how computer science intertwines with cognitive

principles to create innovative solutions and smarter

systems. As a self-starter and a quick learner, she

thrives in environments where she can apply her

technical skills and knowledge to real-world

challenges. Her passion for new technologies drives

her to constantly seek out and embrace the latest

trends and advancements in the tech world.

Dr. M. Jaithoon Bibi, IJECS Volume 13 Issue 12 December, 2024 Page 26687

Sharmila M is a budding technologist currently

pursuing a Bachelor's degree in Computer Science

with Cognitive Systems at Sri Ramakrishna

College of Arts & Science. Her academic journey

has been a thrilling exploration of how computer

science intertwines with cognitive principles to

create innovative solutions and smarter systems.

As a self-starter and a quick learner, she thrives in

environments where she can apply her technical

skills and knowledge to real-world challenges.

Her passion for new technologies drives her to

constantly seek out and embrace the latest trends

and advancements in the tech world.

