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Abstract 

Current studies on behavioural biometrics authentication have been focused on the use of deep learning and 

keystroke dynamics but the aspect of conscious optimization of the algorithm in order to obtain best 

outcome has not been considered. This study employed and incorporated Bayesian algorithm into Recurrent 

Neural Network to build a Keystroke Behavioural Biometric (KBB) authentication model used against 

social engineering attacks. The model begins with importing the keylogging dataset for data pre-processing, 

feature extraction, and RNN algorithm was used to build the KBB model. Hyperparameter tuning was done 

to achieve optimal results. A traditional optimizer called Adaptive Momentum Estimation (Adam) was used 

and evaluated so as to estimate the impact of optimization in model inferencing. RNN model result with 

Bayesian optimization technique shows a better performance than the result of RNN model with ADAM 

optimization. The essence of incorporating and evaluating the best optimization technique is to come up 

with an effective and accurate model for behavioural biometric authentication, that could mitigate 

effectively against social engineering attacks. 

Key Words: Social Engineering Attacks, Keystroke Dynamics, Behavioural Biometrics, Optimization, 

Hyperparameter Tuning 

1. Introduction 

The challenges of preventing online identity theft, cyber fraud, malicious attacks, and phishing in Short 

Message Service (SMS), and man-in-the-middle attacks, are currently moving beyond configuration of 

Password-based authentication, 2-factor and multi-factor authentication methods because several of these 

attacks are based on behavioural manipulations of the victims. These attacks are known as social 

engineering attacks and the common authentication approaches are not built to detect and prevent social 

engineering [1]. Traditional authentication systems are now groping with sterner social engineering attacks. 

A vast majority of social attackers make use of email apps on mobile phones and voices to swindle their 

victims. The real-time opportunity of using mobile phones gives victims of social engineering attacks little 

time to detect and stop themselves from transferring funds to scammers [2]. In social engineering vishing 

attacks, scammers contact mobile phone users posing as representatives of legitimate businesses or 

government agencies to convince their victims to give them their sensitive information. 

Social engineering attacks are a form of behavioural manipulations which easily bypass access control 

measures and existing physiological security prevention systems in place today [3]. In social engineering 

attacks, scammers impersonate trusted officials, like customer service representatives of a bank, to deceive 

and steal unsuspecting victims of millions of dollars every year [4]. Behavioural biometrics is currently 

being used in many authentication systems. This is made possible by using machine learning algorithms 
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that keep track of users' unique features and build on such unique features. This involves using user profiles 

and behaviour such as how the gadgets are helped, how the screen is swiped, and keyboard or gestural 

shortcuts [5]. However, preventing social engineering attacks using behavioural biometric approach has not 

received the required attention especially with focus on keystroke dynamics. This is because there were 

inconsistent and noisy dataset for effective keystroke attack mitigation, coupled with the use of ineffective 

and inefficient technique for identification and mitigation of the effect of attacks. Data needed to analyse 

keystroke dynamics is obtained by keystroke logging [6]. 

Several studies have employed behavioural biometrics especially keystroke dynamics for the purpose of 

authentication. [7] employed Parzen density estimation and a unimodal distribution as the statistical models 

for exploring identity authentication. The authors used human-computer interaction as the basis to describe a 

new behavioural biometric technique. By using a pointing device, they developed a system that captured 

users’ interactions and used the acquired behavioural data to identify each user. [8] believed the aim of the 

US Defence Advanced Research Project Agency`s (DARPA) Active Authentication program was the 

continuous authentication of users of a system by using behavioural biometrics authentication systems that 

observed mouse movement, keystrokes and application usage in an office-like environment. According to 

[9], correlation analysis of a person’s behavioural patterns could be used to ascertain the personality of a 

user of a system, and this could be used to develop the user’s behaviour template that would be used to 

authenticate the user and grant his/her access or to reject the users based on deviations from the user’s 

normal behaviour patterns. 

The keystroke behavioural biometrics can leverage powerful statistical models and deep learning algorithms 

to spot the differences between a known user’s gradual evolution and the unwanted presence of an entirely 

different user [10]. Besides being a potential mechanism for preventing social engineering attacks, it can 

guarantee a smooth user experience on mobile devices [11]. Behavioural biometrics can achieve a better 

user experience by collecting large amounts of user data or user parameters from a mobile device and using 

deep learning to resolve features to match each user. Current studies on behavioural biometrics 

authentication have been focused on the use of deep learning and keystroke dynamics [12-16]. Recurrent 

Neural Network (RNN) has not been reported among all the deep learning algorithms reported for 

behavioural biometrics authentication. RNN is known to be a fantastic algorithm in solving complex 

problems like image and speech recognition and believed to perform well in a noisy and non-linear data set 

like keylogging data. Also, it is important to know that a conscious optimization of deep learning algorithms 

improves their effectiveness and accuracy. This study aims to leverage the power of deep learning and 

optimization for more accurate and robust continuous authentication based on typing patterns. 

The sections following are described as follow. Section 2 discusses the concept of optimization in details 

while section 3 explains the methodology employed for this study. The results are presented in section 4 and 

were equally discussed. Section 5 concludes this study. 

2. Optimization 

Optimization is a problem-solving technique that is used to get solution to a complex problem in an optimal 

manner. Optimization finds optimal solution to a problem by applying input to the objective function. The 

objective of optimization algorithm is to enhance the performance through the process of iteratively 

examining a set solution space and fine-tuning the parameters until the best result is achieved. The best 

solution could be in form of minimization or maximization of the objective function. Optimization also 

involve translation of real-world problem into mathematical model in order to carry out quantitative [17] 

analysis to select the best possible solution. Many fields of study make use of optimization techniques in 

decision making process [185]. Optimization algorithm is also the basis of some machine learning algorithm 

such as training artificial neural network and fitting logistic regression. 

A. Types of Optimization Algorithm 
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Optimization algorithm can be categorized into two forms, differentiable objective function algorithm and 

non-differentiable objective function. 

1. Differentiable Objective Function 

Differentiable objective function is a type of optimization algorithm that deals with problem where the rate 

of change in the function can be calculated at all point. This rate of change is also known as the slope or 

derivative. The gradient in this approach helps to iteratively search for optimal solution by updating the 

parameters in a way that change near the objective function. Differentiable objective function algorithms 

include backtracking algorithm, first order algorithm and second-order algorithm. 

i. Backtracking Algorithm 

Backtracking Algorithm is an iterative procedure of solving search problem. This algorithm makes decisions 

based on feasibility of solution. Backtracking algorithm reverse any solution that go against the constraints 

or solution with no feasible completion. The typical usage of backtracking algorithm is for solving that 

relate to traversing through a distinct solution space [19]. Backtracking algorithm is very suitable for solving 

problem of optimization without time boundary. Figure 1 shows the diagrammatic representation of 

backtracking algorithm process. 

 

Figure 1: Backtracking Process [58] 

ii. First-Order Algorithm 

First-orders algorithms are an optimization algorithm mostly used in deep learning and machine learning. It 

is an iterative technique of getting optimal solution of an objective function making use of first derivative to 

get information of the objective function [20]. First-order algorithms are mostly used in solving intricate 

optimization problem. The algorithm provide medium accurate result [21]. Examples of First-Order 

algorithms are Gradient descent, AdaGrad, RMSProp and Adam. 

Gradient Descent 

The key task of the gradient descent algorithm is to discover the minimum value for a function [22]. The 

mathematical model for gradient descent algorithm is given below: 

𝑌𝑝𝑟𝑒𝑑 = 𝐵0 + 𝐵1(𝑥) (1) 

where Ypred denote the output, B0 is the intercept, B1 is the slope and x represent the input value. 

Adaptive Gradient 

Adaptive Gradient (AdaGrad) is an optimization algorithm that utilizes the information of preceding 

gradients to bring up-to-date the learning rate in an adaptive manner[23]. AdaGrad is mostly used in Natural 
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Language Processing (NLP). In training large scale of neural nets, AdaGrad can be very useful [24]. 

AdaGrad is represented mathematically as: 

𝜃t + 1, i = 𝜃𝑡, i − 
𝑦

 
√𝐺𝑡,ii+ 𝗌 

𝑔𝑡, i (2) 

Where θ is model weight, G is the updated element, η is the learning rate ε is stability constant, i and ii in the 

equation represent the index of the considered parameter at time t. the slope of loss function with respect to 

the index i is represented as gt, i. 

Root Mean Square Propagation 

Root Mean Square Propagation (RMSProp) is an advancement to AdaGrad Algorithm. It was proposed to 

overcome the shortcoming of the AdaGrad algorithm by adding decay factor so that the squared gradient 

cannot only increase but also shrink [24]. RMSProp is widely used in deep learning as it performs well in 

non-static setting. 

 
[𝑔2 

 
](𝑡) = 𝛽𝐸[𝑔2 

 
](𝑡 − 1) + (1 − 𝛽) ( 

ð𝑐 
2

 
) 

 
(3) 

 

𝑤ij 

 

= 𝑤ij (𝑡 − 1) − 
𝑦

 

√𝐸[g2]
𝛿ij 

ðwij  

(4) 

where 𝐸[𝑔2] denote the moving average of squared gradients, 5 represent the learning rate, ð𝑐 represent 
ðw 

gradient cost function with respect to weight, and 𝛽 represent moving average parameter. 𝑤ij denotes the 

current parameter at position i, j. the preceding value of the parameter is represented as wij(𝑡 − 1). 

Adaptive Moment Algorithm 

Adaptive Moment Algorithm (Adam) is an integration of RMSProp and Momentum. Adam stores the 

previous average of decaying gradient squares as Momentum [25]. Adam performs excellently in deep 

learning. Adam algorithm structure is defined using the following equations: 
 

𝑤 = 𝑤 −
 𝛼𝑡  ð𝐿   

𝑡+1 𝑡 ( 
1⁄2 ðw 

𝑣𝑡+𝗌) 𝑡 

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽) * [ ] (6) 
ðw𝑡 

In the equations above, w𝑡 symbolize the present value of parameter w, w𝑡+1 denotes the restructured value 

at time t+1, 𝑎𝑡 represents the learning rate at time t, 𝑣𝑡 represents moving average of squared gradient at 

time t, 𝗌 is an additional small constant for numerical constancy, ð𝐿 
ðw𝑡 

denote gradient of loss function with 

respect to parameter at time t. 𝖰 determine the quantity of weight given to past parameter. It is usually 

between the range of 0 and 1. 

iii. Second-order Algorithm 

Second-order algorithm is an improvement of the first-order algorithm. It provides mechanism to reduce the 

training repetition process in order to cut down the time consumption of the algorithm and reduce the need 

for hyper-parameter tuning in neural network [26]. There are several approaches in second-order 

optimization algorithm. The most simplest and common approach is the Newton’s approach [27]. Other 

approaches are Conjugate Gradient Method, Quasi-Newton Method, Gauss-Newton Method, etc. second- 

order algorithm could be single variable or multi-variable. The equation below represents the multi-variable 

of second-order algorithm, where: 

ƒ(X) = ƒ(𝑥1, 𝑥2,… 𝑥𝑛) (7) 

Aƒ(X) = [ 
6ƒ(𝑥) 

, 
6ƒ(𝑥) 

… 
6ƒ(𝑥)

] (8)
 

6𝑥1 6𝑥2 6𝑥𝑛 
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f(x) represent function with input of X with n components, Af(X) represents the gradient of the function f(X) 

with respect to the vector X. 6𝑓
(𝗑)

 
6𝗑𝑛 

represents the partial derivative of the function f with respect to the nth 

component xn of X. 

1. Non-differentiable Objective Function 

Complex problem cannot be optimized using differentiable objective function. Non-differentiable objective 

function can be used to optimize problem that are complex [28], that is, where the problem does not have 

derivative. Non-differentiable objective function algorithms include direct algorithm, stochastic algorithm, 

and Population algorithm. 

i. Direct Algorithm 

Direct algorithm which is also referred to as black-box optimization [29]. It stands as substitute to Gradient- 

based methods. Direct algorithm is best suited to solve problem which is neither too complex nor too simple 

[30], but between range of complex and simple project. Cyclic Coordinate Search, particle Swarm 

optimization, genetic algorithm etc. are all examples of Direct Algorithm. 

x{k+1}  =  xk  − H{−1}(xk) Af(xk) (9) 

Where x{k+1} represent the Hessian matrix at point xk, Af(xk) denotes the gradient of the objective function 

f(x). It is usually the second derivative function. 

ii. Stochastic Algorithm 

Stochastic Algorithm is an optimization algorithm for solving complex problem. It traverses the search 

space in a randomized manner, in contrast to deterministic approach that uses a fixed value. Stochastic 

Algorithm uses a comprehensive [31] method that can easily be understood. Stochastic algorithm are mostly 

useful in Natural language processing (NLP), Computer Vision etc. [32]. Examples of Stochastic Algorithm 

are Cross-entropy and evolution strategy. 

ƒ(𝑥) ➟ 𝐸[ƒ𝛾(𝑥)] (10) 

Where E represents the expectation over the random variable γ and fγ(x) is a function of x and. 

iii. Population-Based Algorithm 

Population-based algorithm is based on collection of candidate solutions. These solutions maintained by 

population-based algorithm is mostly denoted as population or swarm. The optimal solution is achieved 

through iteratively traversing through the swarm. This algorithm uses the basis of social behavior [33]. 

vi(t + 1) = w * vi(t) + c1 * rand() * (pbesti − xi(t)) + c2 * rand() * (gbest − xi(t)) 

(11) 

xi(t + 1)  =  xi(t) + vi(t + 1) (12) 

where, w is the inertia weight, c1 and c2 are acceleration constants, vi(t) represents the velocity of particle i 

at iteration t, xi(t) represents the position of particle i at iteration t, pbesti represents the personal best 

position found by particle i, and gbest represents the global best position found by any particle in the swarm. 

A random number between 0 and 1 is produced using rand (). 

B. Hyper Parameter Tuning 

Hyperparameter is a substantial factor in machine learning and deep learning. It controls performance, 

configuration and function of a model. The efficiency of training a model directly depends on the choice of 

hyperparameter. Hyperparameters are usually gotten before the training process. Some examples of 
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hyperparameter are learning rate of training neural network, the k in k-nearest neighbour, and the L1 or L2 

regularization in logistic regression. 

Hyperparameter tuning also known as hyperparameter optimization is an imperative process in machine 

learning that involve the process of amending model performance in order to achieve an optimal output [34]. 

Hyperparameter tuning is very important in model building especially when the model’s objective function 

is expensive to define. Hyperparameter tuning contribute to the complexity and time consumption of 

building an well-organized machine learning model [35], therefore it requires careful selection. The strength 

required to carry out hyperparameter tuning rely on the weight of the neural network [36]. 

Several methods are employed to carry out the process of optimizing hyperparameter. Some of the 

approaches are random search, grid search, Bayesian optimization, tree structure-parzen estimator. 

1. Grid Search 

Grid search is one of the earliest methods in performing hyperparameter tuning. It involve thorough 

searching through manually defined subset of the learning algorithm space [37]. Grid search construct a 

network of possible hyperparameter and iteratively combine hyperparameters in a specified order. The 

performance is recorded for each iteration. Then the best model with the optimal hyperparameter. Grid 

search consumes a lot of time since it searches through all the possible hyperparameters in the solution space. 

Figure 2 gives the diagrammatic representation of grid search. When dealing with model with less 

dimension, grid search tends to be more reliable [43]. 
 

Figure 2: Grid Search Method [75] 

2. Random Search 

Grid search consumes more time due to the fact that it performs exhaustive search through the solution 

space. Random search reduces the time consumption by searching through arbitrarily selected point of the 

solution space. The combination of point that result at the optimal solution will be finally selected. Random 

search is not always reliable in achieving the optimal solution [34]. Figure 3 represent random search 

method in a diagrammatic form. 



Taiwo Adigun., IJECS Volume 13 Issue 09 September, 

2024 
Page 26379 

 

 

 
 

Figure 3: Random Search Method [37] 

3. Bayesian Optimization 

Bayesian optimization is used in tuning hyperparameter of objective functions that are complex, costly to 

evaluate, and noisy. It applies the theory of Bayes to search for optimal objective function, either minimum 

or maximum. It is mostly used in machine learning and deep learning to maximize the objective function 

such as getting the efficiency of industrial process or getting the efficiency of Deep Learning model [38]. 

This method best suit problem with multiple objective optimizations, due to the fact that it can search 

through complex models. 
 

Figure 4: Process model for Bayesian optimization Algorithm [39] 

4. Tree-Structured Parzen Estimator 

Tree-structured Parzen Estimator (TPE) is a variant of Bayesian Optimization that create a tee like structure 

to guide through the search of optimal hyperparameter. The process in TPE is an iterative development that 

utilizes historical data of estimated hyperparameters to suggest subsequent set of hyperparameters [40]. TPE 

is widely used due to its flexibility and firm performance [41]. TPE make use of alternative model to 

determine the next configuration likewise Acquisition function (AF). The only drawback of TPE is that it 

does not accommodate interaction between hyperparameters. Figure 5 represents the flowchart for TPE 

process. Some of the advantages of using TPE are: 

i. It requires lesser time to perform tuning 

ii. It is error-tolerant and has potential for improvement 

iii. TPE can accommodate extensive variation of variables in parameter search. 
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Figure 5: Flowchart for Tree-Structured Parzen Estimator Process [42] 

3. Methodology 

Building a RNN model for behavioural biometric authentication and obtaining a performance employed a 

traditional optimizer called Adaptive Momentum Estimation (Adam) and Bayesian algorithm as the 

optimizers so as to estimate the impact of optimization in model inferencing. The study develops a model to 

prevent social engineering attack which, utilized optimized Recurrent Neural Network. The model begins 

with importing the keylogging dataset for data pre-processing and feature extraction. RNN algorithm was 

used to build the Keystroke Behavioural Biometric (KBB) model. Hyperparameter tuning was done to 

achieve optimal results. Figure 6 describes the KBB authentication model for preventing social engineering 

attacks emphasizing the importance of optimization. This significance of optimization was assess using 

Adam and Bayesian techniques. This study begins by processing the keystroke dataset, extracting the 

essence of users’ behaviour, building RNN model and obtaining the performance evaluation metrics results 

with the optimization techniques. The essence of incorporating and evaluating the best optimization 

technique is to come up with an effective and accurate model for behavioural biometric authentication. 
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Figure 6: Sequence Diagram for Building Deep Learning Model 

A. Dataset Collection 

The keylogging dataset was downloaded from UNSW-NB Cyber Range Laboratory of the Australian Centre 

for Cybersecurity (ACC). The dataset contains 1633 instances. The total number of normal records in the 

dataset is 1469. The dataset also contains 164 keylogging records and 24 number of columns. Table 1 gives 

the summary of dataset information. 

Table 1: Keylogging Data Description 
 

S/N Data Values 

1 Number of columns 24 

2 Number of normal records 1,469 

3 Number of keylogging records 164 

4 Total number of records 1,633 

B. Data Pre-processing 

In order to ensure building of effective model for the classification, the dataset was cleaned to remove 

irrelevant or noisy data points. Missing value was handled on the dataset by filling the necessary fields using 

the median of the dataset. Other preprocessing activities include scaling, and encoding. 

Scaling 

Scaling was used to transform the numerical data into specific range so that the algorithm can work 

effectively with the data. The study utilizes MinMax Scaler approach to scale the data. The equation for 

min-max scaling is given in 13. 
 

Xscaled 

 

=
    (K−Kmin) 

(K𝑚𝑎𝑥−K𝑚i𝑛) 

 

(13) 

Missing Value Handling 

Handling missing value is very important in data pre-processing. The data is checked to ensure that all the 

values are complete for each instance of the dataset. The data is checked to ensure there are no error in the 

data entries, empty field. The structure of the dataset is observed to get idea of the values, giving the idea of 

the proportion of the missing value. Then, the value of unimportant columns are dropped. 

Performance 
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Encoding 

This process involves transforming the character field in the dataset to corresponding numerical value so 

that the deep learning model can carry out effective classification. The protocol names such as TCP, UDP, 

ARP, IGMP, and RARP in the data set are converted to corresponding numerical values. 

C. Feature Extraction 

The next step after the pre-processing is the extraction of plausible features from the dataset. Dimensionality 

reduction approach was used to extract the features from the dataset. This study utilizes the Principal 

Component Analysis technique to perform dimensionality reduction on the data set. PCA transform high 

dimensional data into low dimensional data, at the same time preserving the most important features of the 

data. The formula for PCA is given thus. 

Cov(X,Y) = 1 ∑𝑛  (𝑥 − 𝑥′)(𝑦 − 𝑦′) 
 

(14) 
𝑛 i=1 

D. Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) stand as enchanting pillar in the realm of deep learning, offering a 

unique approach to process chronological data. Unlike traditional feed forward neural networks, RNNs 

possess a fascinating ability to retain information from previous time steps, making them adept at tasks 

involving sequences. At the heart of an RNN lies its recurrent nature, where each hidden layer not only 

receives input from the current time step but also from its own output in the previous time step. This 

intricate feedback loop allows RNNs to capture dependencies and patterns that extend across time, creating a 

sense of memory that empowers them to perceive context and context changes dynamically. The formula for 

RNN is illustrated in 13. 

h=σ(UX+Wh_(-1)+B (15) 

Y=O(Vh+C) (16) 

RNN is used in this study based on its ability to operates and work well with sequences or time series dataset 

which is the type of dataset used in this study. The dataset was split into training and testing in the model 

design phase and some parameters such as dense, activation, batch size, sigmoid, filament, input size and 

epoch were used for building the Recurrent Neural Network. The RNN model is used to generate the 

performance metrics for evaluation such as log loss, accuracy, and recall, precision, MAE. 

E. Hyper parameter Tuning 

The major focus of this study is to perform hyperparameter optimization to improve the model in order to 

yield optimal solution. ADAM and Bayesian optimizers are used and compared in order to reinforce the 

significance of optimization in model building. 

Adam optimizer is one of the traditional optimizers used in deep learning framework. It is an efficient 

optimization method that adjusts the learning rates of each parameter in the model, leading to faster 

convergence and better performance. The equation for Adam optimizer is given thus. 
 

𝑤 = 𝑤 −
 𝛼𝑡  ð𝐿   

𝑡+1 𝑡 ( 
1⁄2 ðw 

𝑣𝑡+𝗌) 𝑡 

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽) * [ ] (18) 
ðw𝑡 

In the equations above, w𝑡 symbolize the present value of parameter w, w𝑡+1 denotes the restructured value 

at time t+1, 𝑎𝑡 represents the learning rate at time t, 𝑣𝑡 represents moving average of squared gradient at 

time t, 𝗌 is an additional small constants for numerical constancy, ð𝐿 
ðw𝑡 

denote gradient of loss function with 
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respect to parameter at time t. 𝖰 determine the quantity of weight given to past parameter. It is usually 

between the range of 0 and 1. 

Bayesian optimization method was also adopted and incorporated for the hyperparameter optimization 

process in this study due to its ability to modify each epoch’s weights during deep learning model optimizers 

training as well as it brought about minimization of loss function. This algorithm is used to adjusts neural 

network attributes for example; learning rates, number of epochs, number of dense layer units and activation 

function. Thus, helping in accuracy improvement as well as overall loss reduction. Bayesian optimizer is 

well appropriate algorithm for classification or regression hyperparameters model optimization. The 

hyperparameters that were optimized in this study are learning rate, direction, batch size, epoch, and 

activation. 

F. Evaluation 

Subsequently, after the model building to generate the performance metrics. The metrics that are used to 

evaluate the model include accuracy, precision, recall, and F1-score. Costs metrics such as MAE, MSE as 

well as RMSE is used in order to know the cost or error value associated with the algorithm used. 

4. Results and Discussion 

A. Dimensionality Reduction 

Dimensionality reduction is done on the dataset using principal component analysis (PCA). PCA is used on 

the dataset to rank the columns present in the dataset based on their important and influence on the deep 

learning model performance. From the analysis, 15 most important column were selected based on PCA 

results to carry out the modeling operation. Table 2 shows the PCA results on the all columns. 

Table 2: PCA Results on the 23 Columns in the Dataset 
 

S/N Column Name PCA Value 

1. Sport 8.984483636 

2. Stime 5.601938036 

3. Bytes 5.500149479 

4. Pkts 4.904953085 

5. Seq 3.42865005 

6. Ltime 1.251295417 

7. Dport 1.021077818 

8. Mean 0.91161932 

9. Dpkts 0.387231068 

10. Sbytes 0.303931881 

11. Max 0.141405754 

12. Dbytes 0.015518912 

13. Srate 2.01409E-15 

14. Drate -4.23652E-16 

15. Rate -0.001631127 

16. Spkts -0.35145568 

17. Sum -0.760994446 

18. State -0.851771308 

19. Proto -1.415025276 

20. Dur -1.521098736 

21. Flgs -2.415818592 

22. Stddev -3.647112133 

23. Min -3.954203717 
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From the PCA result shown in Table 2 above, 15 most important columns based on the ranking result is used 

to carry out deep learning operations in this study. The most important fifteen columns are shown in Table 3 

Table 3: The Most Important 15 Columns 
 

S/N Columns PCA Results 

1. Sport 8.984483636 

2. Stime 5.601938036 

3. Bytes 5.500149479 

4. Pkts 4.904953085 

5. Seq 3.42865005 

6. Ltime 1.251295417 

7. Dport 1.021077818 

8. Mean 0.91161932 

9. Dpkts 0.387231068 

10. sbytes 0.303931881 

11. Max 0.141405754 

12. dbytes 0.015518912 

13. Srate 2.01409E-15 

14. drate -4.23652E-16 

15. Rate -0.001631127 

B. Hyper parameter Tuning Setting 

The major contribution of this study is hybridizing Bayesian optimization technique in order to come up 

with a robust and an accurate authentication system. We used one of the traditional optimizers with RNN 

before using Bayesian optimizer with it. The traditional optimizer is called ADAM optimizer and its 

parameter and the corresponding values are set as shown in Table 4. The set of parameters of Bayesian 

optimizer and the corresponding values as shown in Table 5. These values were set after several trials of 

different combinations of these values so as to get a setting that will improve the result gotten from RNN 

parameter optimization by ADAM and Bayesian algorithm. 

Table 4: Adam Hyper parameter Tuning Settings 
 

Optimizer Parameter Values 

Adam Number of dense layer unit 1 

Dropout 0.5 

Activation function Sigmoid 

Learning rate 0.01 

Number of epochs 10 

Input shape 15, 1 

Batch size 32 

Table 5: Bayesian Hyper parameter Tuning Settings 
 

Optimizer Parameter Values 

Bayesian 

Optimizer 

Number of dense layer unit 1 

Dropout 0.5 

Activation function Sigmoid 

Learning rate 0.001 

Number of epochs 10 

Input shape 15, 1 

Batch size 32 

Number of trials 15 

Number of iterations 60 
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 Minimum Hyperparameter units 96 

Maximum Hyperparameter units 480 

C. Recurrent Neural Network (RNN) Using Adam Optimizer 

Performance evaluation analysis done on RNN using some machine learning metrics which are log loss, 

accuracy, precision, recall, RMSE, MAE as well as MSE based on Adam parameter tuning optimization 

which is given in Table 6 below. From the analysis log loss result is 0.0186, accuracy of 99.69, precision of 

0.9966, recall of 1.0000, RMSE of 0.0563, MSE of 0.0032 as well as MAE of 0.0108. 

Table 6: RNN Metrics Result based on Adam Optimizer 
 

S/N Machine learning Metrics Result 

1. Log loss 0.0186 

2. Accuracy 99.69 

3. Precision 0.9966 

4. Recall 1.0000 

5. RMSE 0.0563 

6. MAE 0.0032 

7. MSE 0.0108 

D. Recurrent Neural Network (RNN) Using Bayesian Optimizer 

The results of RNN with optimization is presented in Table 7 below give the result gotten from RNN 

operations where log loss result is 0.0036, accuracy of 100, precision of 1.00, recall of 1.00, RMSE of 

0.0006, MSE of 0.0032 as well as MAE of 0.0032. 

Table 7: RNN Metrics Result based on Bayesian Optimizer 
 

S/N Machine learning Metrics Result 

1. Log loss 0.0036 

2. Accuracy 100 

3. Precision 1.00 

4. Recall 1.00 

5. RMSE 0.0006 

6. MAE 0.0032 

7. MSE 0.0032 

Figure 7 below give the graphical representation of training loss and validation loss gotten from 10 epoch 

iterations where line red denote training loss and the blue line represent validation loss and Figure 8 

illustrates training and validation accuracy result with the same number of epochs. The two graphs describe 

a balanced Bias-Variance tradeoff. 
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Figure 7: RNN Training and Validation Loss 
 

 

Figure 8: RNN Training and Validation Accuracy 

Looking at Figure7 and Figure 8, it is also important to know that the prediction was highly accurate with 

less error. It shows the results of training and the testing phases. Figure 7 shows that the loss of RNN model 

during validation is lesser than the loss during the training. And Figure 8 shows that the accuracy of RNN 

model during validation is higher than the its accuracy during the training. So, the model is highly accurate 

with Bayesian optimization. 

E. Comparative Analysis of RNN Performance Evaluation Metrics Result with and Without Bayesian 

Optimization 

The comparative analysis is done using tables and graphs for the visualization of the difference in the 

implementation of RNN with two difference optimization techniques. the metrics result. Table 8 shows the 

comparative analysis showing the various metrics values with ADAM optimization and with Bayesian 

optimization. 

Table 8: RNN Metrics Result with and without Bayesian Optimization 
 

S/N Machine learning Metrics With Adam Optimization With Bayesian Optimization 

1. Log loss 0.0186 0.0036 

2. Accuracy 99.69 100 

3. Precision 0.9966 1.00 

4. Recall 1.0000 1.00 
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Comparative Analysis of Accuracy Result 
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Log loss Precision Recall RMSE MAE MSE 

With Adam Optimization With Bayesian Optimization 

5. RMSE 0.0563 0.0006 

6. MAE 0.0032 0.0032 

7. MSE 0.0108 0.0032 

Figure 9 shows the graphical representation of the comparative analysis of log loss, precision, recall, RMSE, 

MAE and MSE result while Figure 10 shows the comparison of accuracy result with respect to the two 

optimization techniques. 
 

Figure 9: Comparative Analysis for Log Loss, Precision, Recall, RMSE, MAE and MSE Results 
 

 

 

 

 
   

  

  

  

  

  

    

   

   

   

 

 

 

Figure 10: Comparative Analysis for Accuracy Result Comparative Analysis 

5. Discussion 

By considering the evaluation metrics results, it will be discovered that the choice of RNN algorithm with 

ADAM optimizer is not a bad idea at all with a considerable high accuracy, precision and recall. Even the 

metrics showing the errors, that is, the difference between a statistical model's predicted values and the 

actual values are considerable low. These are Log Loss, Root Mean Square Error, Mean Absolute Error, and 

Mean Square Error. But looking at the result we have got with Bayesian optimization algorithm, we can see 
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that there is a great improvement. That is, the accuracy and the precision of the model got increased and the 

cost metrics got reduced, that is, the measures of errors. The comparison shown justifies the choice of this 

behavioural authentication framework for mitigating against social engineering attacks. 

6. Conclusion 

This study has established the importance and significance of optimizing deep learning algorithms especially 

in addressing complex problems that involves non-linear and noisy data. Appropriate use of an optimization 

algorithm makes a robust, effective and accurate deep leaning model especially where we used the approach 

to analyze a keystroke dynamics dataset and predict an attack. Hence, we have developed a behavioural 

authentication model to mitigate against social engineering attacks. 
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