

International Journal Of Engineering And Computer Science Volume 13 Issue 08 August 2024, Page No. 26317-26324 ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i08.4872

Profit Comparison of Computer System with Hardware Redundancy Subject to Different Repair Activities

Vikram Munday.¹, Permila.²

¹ Department of Statistics, Ramjas College, University of Delhi, Delhi – 110007 (India)

²Department of Statistics, Govt. PG College for Women, Rohtak-124001 (India)

Abstract

In this research paper, main concentrate of the authors on the profit comparison of computer system with hardware redundancy by introducing the concept of priority to software up-gradation, hardware preventive maintenance (PM) and hardware maximum repair time (MRT). The system fails independently from normal mode. All the repair activities such as hardware repair, software up-gradation, hardware preventive maintenance before failure and hardware replacement after maximum repair time are carried out by a single server immediately on need basis. All random variables are statistically independent. The negative exponential distribution is taken for the failure time of the component while the distributions of repair time, up-gradation time, preventive maintenance and replacement time are assumed arbitrary with different probability density functions. Semi-Markov process and regenerative point technique are used. The behaviour of profits of the system models have been examined for different parameters and costs.

Key Words: Computer System, Hardware Redundancy, Priority to Software Up-gradation, Repair, Preventive Maintenance, Replacement, Profit Analysis and Stochastic Modelling.

1. Introduction

In current age, computer systems have become an essential part of life, having significant impact on modern society. The importance of computer systems cannot be denied in the corporate or business world, at the workplace and even in one's personnel life. Several techniques have been suggested by the designers and engineers for performance improvement of the systems. The unit wise redundancy technique has been considered as one of these in the development of stochastic models for computer systems. Malik and Anand (2010), Malik and Sureria (2012) and Kumar et al. (2013) analyzed computer systems with cold standby redundancy under different failures and repair policies. Also, Munday et al. (2014, 15, 16) tried to establish a stochastic model for a computer system by providing hardware redundancy in cold standby.

The basic interest of the authors on the profit comparison of computer system with hardware redundancy by introducing the concept of priority to software up-gradation, hardware preventive maintenance (PM) and hardware maximum repair time (MRT). The system fails independently from normal mode. All the repair activities such as hardware repair, software up-gradation, hardware preventive maintenance before failure and hardware replacement after maximum repair time are carried out by a single server immediately on need basis. All random variables are statistically independent. The negative exponential distribution is taken for the failure time of the component while the distributions of repair time, up-gradation time, preventive maintenance and replacement time are assumed arbitrary with different probability density functions. Semi-Markov process and regenerative point technique are used. The behaviour of profits of the system models have been examined for different parameters and costs.

2. Notations		
Е	:	Set of regenerative states
E	:	Set of non-regenerative states
0	:	Computer system is operative
Scs	:	Software is in cold standby
PM	:	Preventive Maintenance
MRT	:	Maximum Repair Time
a/b	:	Probability that the system has hardware / software failure
α_0/β_0	:	The rate by which hardware component undergoes for replacement/preventive
		maintenance
λ_1/λ_2	:	Hardware/Software failure rate
HFUr /HFWr	:	The hardware is failed and under repair/waiting for repair
SFUg/SFWUg	:	The software is failed and under/waiting for up-gradation
HFURp /HFWRp	:	The hardware is failed and under replacement/waiting for replacement
HFUPm /HFWPm	:	The hardware is failed and under replacement/waiting for Preventive
		maintenance
HFUR/HFWR	:	The hardware is failed and continuously under repair / waiting
		for repair from previous state
SFUG/SFWUG	:	The software is failed and continuously under up-gradation
		/waiting for up- gradation from previous state
HFURP/HFWRP	:	The hardware is failed and continuously under replacement /
		waiting for replacement from previous state
HFUPM/HFPM	:	The hardware is continuously under/waiting for
		Preventive maintenance from previous state
g(t)/G(t)	:	pdf/cdf of hardware repair time
f(t)/F(t)	:	pdf/cdf of software up-gradation time
r(t)/R(t)	:	pdf/cdf of hardware replacement time
m(t)	:	pdf/cdf of hardware preventive maintenance time
$q_{ij}(t)/Q_{ij}(t)$:	pdf / cdf of first passage time from regenerative state S_i to a regenerative state
		S_j or to a failed state S_j without visiting any other regenerative state in (0, t]
$q_{ij,k}(t)/Q_{ij,k}(t)$ state	:	pdf/cdf of direct transition time from regenerative state S_i to a regenerative
		S_i or to a failed state S_i visiting state S_k once in (0, t]

$M_i(t)$: Probability that the system up initially in state $S_i \in E$ is up at time t
		without visiting to any regenerative state
$W_i(t)$:	Probability that the server is busy in the state S_i up to time 't' without making any
		transition to any other regenerative state or returning to the same state via one or
more		
		non-regenerative states.
μ_i	:	The mean sojourn time in state S_i which is given by
		$\mu_i = E(T) = \int_0^\infty P(T>t) dt = \sum_j m_{ij}$,
		where T denotes the time to system failure.
m _{ij}	:	Contribution to mean sojourn time (μ_i) in state S_i when system transits
		directly to state S_j so that
		$\mu_{i} = \sum_{j} m_{ij} \text{ and } m_{ij} = \int_{0}^{\infty} t dQ_{ij}(t) = -q_{ij}^{*'}(0)$
&/©		: Symbol for Laplace-Stieltjes convolution/Laplace convolution
*/**		: Symbol for Laplace Transformation (LT)/Laplace Stieltjes
		Transformation (LST)
Р		: Profit of the Model as shown in Munday et al. (2019)
P1		: Profit of the present model

3. System models with Different Repair Activities as shown in following Figures

State Transition Diagram (Basic Model)

State Transition Diagram (Priority to S/w Up-gradation)

Fig. 2 (Model discussed in research paper [13])

State Transition Diagram (Subject to Maximum Repair Time)

Fig. 3 (Model discussed in research paper [12])

State Transition Diagram (Subject to Preventive Maintenance)

Fig. 4 (Model discussed in research paper [15])

4. Tabulation of Profit of system model as shown in Fig. 1

			r	r	r
	$\lambda_2 = 0.001, \alpha = 2, \theta = 5,$				
λ_1	a=0.6, b=0.4	$\lambda_2 = 0.002$	α=3	θ=7	a=0.4, b=0.6
0.01	14986.15005	14984.40795	14987.22013	14986.50857	14989.3419
0.02	14973.8227	14972.07423	14976.09294	14974.18092	14981.19235
0.03	14961.28466	14959.52998	14964.88333	14961.64258	14972.94843
0.04	14948.53851	14946.77776	14953.59207	14948.89612	14964.61091
0.05	14935.58681	14933.82014	14942.2199	14935.9441	14956.18055
0.06	14922.43211	14920.65966	14930.7676	14922.78906	14947.6581
0.07	14909.07695	14907.29887	14919.23592	14909.43356	14939.04433
0.08	14895.52387	14893.7403	14907.6256	14895.88012	14930.34
0.09	14881.77539	14879.98647	14895.9374	14882.13127	14921.54585
0.1	14867.83402	14866.0399	14884.17208	14868.18952	14912.66264

Table 1: Fig. 1 Profit Vs Hardware Failure Rate (λ1)

Table 2: Fig. 2 Profit Vs Hardware Failure Rate (λ1)

λ_1	λ2=0.001, α=2, θ=5,	λ2=0.002	α=3	θ=7	a=0.4, b=0.6
	a=0.6, b=0.4				
0.01	14986.17	14984.44	14987.23	14986.53	14989.35501
0.02	14973.88	14972.15	14976.12	14974.23	14981.22646
0.03	14961.39	14959.66	14964.93	14961.75	14973.01136
0.04	14948.72	14946.99	14953.67	14949.07	14964.71044
0.05	14935.85	14934.13	14942.34	14936.21	14956.32442
0.06	14922.8	14921.08	14930.93	14923.16	14947.85399
0.07	14909.57	14907.85	14919.46	14909.93	14939.29988
0.08	14896.16	14894.44	14907.91	14896.51	14930.6628
0.09	14882.56	14880.85	14896.29	14882.92	14921.94344
0.1	14868.79	14867.08	14884.6	14869.15	14913.14252

Table 3: Fig. 3 Profit Vs Hardware Failure Rate

	λ2=0.001, α0=0.01, α=2,						
λ1	β=3, θ=5, a=0.6, b=0.4	λ2=0.002	α0=0.05	α=3	β=5	θ=7	a=0.4, b=0.6
0.0 1	14986.87669	14985.142	14985.533 6	14986.996 48	14987.692 22	14987.235 14	14989.815 29

Vikram Munday., IJECS Volume 13 Issue 08 August, 2024

0.0		14973.668	14972.718	14975.655	14977.171	14975.763	14982.194
2	14975.40488	32	54	95	83	05	25
0.0		14962.110	14959.830	14964.244	14966.701	14964.207	14974.536
3	14963.84923	74	01	02	36	13	57
0.0		14950.467	14946.866	14952.760	14956.276	14952.565	14966.841
4	14952.20769	19	09	38	63	31	6
0.0		14938.735	14933.824	14941.204	14945.893	14940.835	14959.108
5	14940.4783	71	9	74	55	63	75
0.0		14926.914	14920.704	14929.576	14935.548	14929.016	14951.337
6	14928.65913	38	66	82	15	17	41
0.0		14915.001	14907.503	14917.876	14925.236	14917.105	
7	14916.74835	38	63	37	55	1	14943.527
0.0		14902.994	14894.220	14906.103	14914.954	14905.100	14935.676
8	14904.74418	94	14	14	96	63	96
0.0		14890.893	14880.852	14894.256	14904.699	14893.001	14927.786
9	14892.64493	36	59	9	69	08	72
		14878.694	14867.399	14882.337	14894.467	14880.804	14919.855
0.1	14880.44896	99	44	43	14	8	76

Table 4: Fig. 4 Profit Vs Hardware Failure Rate

	λ2=0.001, α=2, θ=5,						
	a=0.6,						
	b=0.4, γ=0.034,				a=0.4.		
λ1	β0=0.001	λ2=0.002	α=3	θ=7	b=0.6	γ=0.035	β0=0.002
0.0		14654.878	14749.700	14747.057	14940.022	14918.222	13562.176
1	14746.89757	77	71	96	86	27	49
0.0		12842.178	12851.785	12848.808	13695.140	13051.046	10923.332
2	12848.66272	38	06	56	39	41	06
0.0		11900.878	11895.184	11891.695	12669.377	12110.305	9687.6827
3	11891.55427	43	29	15	14	33	37
0.0		11286.204	11276.546	11272.461	11998.101	11499.773	8931.1757
4	11272.32349	89	3	54	91	37	33
0.0		10843.715	10833.382	10828.651	11509.353	11060.636	8410.6084
5	10828.51496	29	88	02	71	57	73
0.0		10506.584	10496.801	10491.384	11132.117	10725.819	8027.1654
6	10491.25006	37	09	56	64	11	59
0.0		10239.660	10230.938	10224.806	10829.773	10460.407	7731.5221
7	10224.67343	75	27	66	02	56	59
0.0		10022.241	10014.803	10007.930	10580.846	10243.934	7495.8567
8	10007.79845	82	62	6	56	32	83

0.0	9827.360699	9841.1892	9835.1301	9827.4919	10371.658	10063.434	7303.1328
9		59	47	09	55	06	25
0.1	9674.502817	9687.7047 14	9683.0587 99	9674.6332 02	10192.974 6	9910.2281 42	7142.2767 52

Particular Cases

For $g(t) = \alpha e^{-\alpha t}$, $f(t) = \theta e^{-\theta t}$, $r(t) = \beta e^{-\beta t}$ and $m(t) = \Upsilon e^{-\Upsilon t}$

5. Comparative Study of Profit of System Models

The profit of the basic model has been compared with the profits of other repair activities already discussed in research papers as given in references. It is revealed that the basic model is less profitable as compared to the system models with the concepts of priority to s/w up-gradation and maximum repair time to hardware component but profitable over the concept of preventive maintenance of hardware component. And, hence we can say that the concept of hardware preventive maintenance in a computer system with hardware redundancy in cold standby is not much helpful in making the system more profitable. The graphical presentation of profits of the system models with respect to hardware failure rate (λ 1) have been shown numerically in tables 1 to 4. Finally, it is concluded that a computer system can be made more reliable and profitable to use by providing hardware redundancy in cold standby and maximum hardware repair time to the server.

References

- 1. S. Osaki, "Reliability analysis of a two-unit standby redundant system with preventive maintenance", IEEE Transactions on Reliability, vol. R-21 (1), pp. 24 29, 1972.
- M. Rander, S. Kumar and A. Kumar, "Cost analysis of a two dissimilar cold standby system with preventive maintenance and replacement of standby", Microelectronics Reliability, vol. 34 (1), pp. 171 – 174, 1994.
- 3. Welke, S. R., Labib, S. W. and Ahmed, A. M., "Reliability Modeling of Hardware/ Software System", IEEE Transactions on Reliability, vol.44 (3), pp.413-418, 1995.
- 4. S.C. Malik, P. Nandal and M.S. Barak, "Reliability Analysis of a System under Preventive Maintenance", Journal of Mathematics and System Sciences, vol. 5 (1), pp. 92 115, 2009.
- 5. Anand, Jyoti and Malik, S.C., "Analysis of a Computer System with Arbitrary Distributions for H/W and S/W Replacement Time and Priority to Repair Activities of H/W over Replacement of the S/W", International Journal of Systems Assurance Engineering and Management, vol.3 (3), pp. 230-236, 2012.
- 6. Kumar, Jitender; Kadyan, Mukender Singh and Malik, Suresh Chander, "Cost-analysis of a two-unit cold standby system subject to degradation, inspection and priority", Maintenance and Reliability, vol. 14(4), pp. 278-283, 2012.
- 7. Malik, S.C. and Sureria, J.K., "Profit Analysis of a Computer System with H/W Repair and S/W Replacement", International Journal of Computer Applications, vol.47(1), pp. 19-26, 2012.
- 8. Malik, S.C., "Reliability modeling of a computer system with preventive maintenance and priority subject to maximum operation and repair times", International Journal of System Assurance Engineering and Management, vol. 4 (1), pp. 94-100, 2013.
- 9. Barak, Sudesh K. and Malik, S.C., "A Standby System with Priority to Repair over Preventive Maintenance", International Journal of Engineering Research (IJER), vol. 3(4), pp. 241-244, 2014.
- 10. Malik, S.C. and Munday, V.J., "Stochastic Modeling of a Computer System with Hardware Redundancy", International Journal of Computer Applications, vol. 89(7), pp. 26-30, 2014.
- 11. Kumar, Ashish, Barak, Monika S and Malik, S.C., "Economic Analysis of a Computer System with Software Up-gradation and Priority to Hardware Repair over Hardware Replacement Subject to

Maximum Operation and Repair Times", International Journal of Scientific and Engineering Research, vol. 6(4), pp. 1661-1668, 2015.

- 12. Munday, V.J., Permila and Malik, S.C. "Stochastic Modeling of a Computer System with Hardware Redundancy Subject to Maximum Repair Time", International Journal of Computer Science Engineering, vol. 4(5), pp.228-236, 2015.
- 13. Munday, V.J. and Permila, "Reliability Measures of a Computer System with Hardware Redundancy and Priority to Software Up-gradation" International Journal of Statistics and Reliability Engineering, vol. 2(2), pp. 117-128, 2015
- 14. [Munday, V.J. and Malik, S.C. "Stochastic modelling of a computer system with software redundancy", International Journal of Engineering and Management Research, vol. 5(1), pp.295-302, 2015.
- 15. Munday, V.J., Permila and Malik, S.C. "Reliability modelling of a computer system with hardware redundancy subject to preventive maintenance", International Journal of Statistics and Reliability Engineering, vol. 3(2), pp. 176-189, 2016.
- 16. Munday, V.J., Permila and Malik, S.C. "Analysis of a computer system with software redundancy subject to preventive maintenance", International Journal of Engineering Research and Technology, vol. 8(12), pp. 604-610, 2019.