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Abstract 

This paper proposes a methodology for the design of electronic control unit (ECU) hardware units with 

increased performance and reliability. Today's vehicles are equipped with dozens of ECUs that significantly 

influence the system's efficiency, reliability, performance, and safety. With the increased complexity of control 

algorithms and the environmental constraints that automotive systems operate, the robustness and efficiency of 

the ECUs are of utmost importance. 

In this work, an approach is proposed based on combining hardware redundancy, commercial field 

programmable gate arrays (FPGAs), and artificial intelligence strategies to provide increased redundancy 

checks and robust control. An additional redundancy is added to the hardware architecture of the ECU to 

include a parallel hardware unit. The two controlling units operate in parallel. The output of each of them is 

compared, allowing redundancy checks in the computation of the output variable (oV) of the system. The 

mathematical model of the ECU depicts the governing equations of the ECU in the form of differential 

equations, which results in a corresponding state-space configuration. These mathematical models are encoded 

into the field programmable gate array (FPGA) and processed in hardware, leading to an equivalent software-

based implementation. 

To analyze the performance of both models within the ECU, an artificial neural network (ANN)-based strategy 

is proposed. The ANN depicts the governing equations of the ECU in the form of differential equations encoded 

in the form of sigmoidal functions. To analyze the reliability of the control action in the ECU, the temperature 

of the system is increased, which leads to a random variation of the system parameters. The variability of the 

ECU parameters leads to a deviation in the computation of the oV and the corresponding control action. The 

robustness of the control is determined in such conditions. A control law is determined to guarantee proper 

control action under variations in the governing equations of the system. 

This control law is represented by a simple algebraic equation, which can then be cast in various control 

strategies, such as look-up tables or fuzzy logic controllers. Several cases are simulated to assess the 

performance of the proposed control law for the hardware redundancy scheme, for the ANN-based equivalent 

software implementation approach, and for the additional fuzzy logic controller. The simulation results are 

analyzed concerning the requested oV and give insight into the performance and reliability of the proposed 

dedicated ECU design. 
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1. Introduction 

The proliferation of electronics and, consequently, 

electronic control units (ECUs) in various vehicles 

has significantly impacted consumers in terms of 

convenience, safety, and driving experience. 

Adverse effects such as increased complexity, costs, 

and lower reliability of entire systems can result 

from the growing number of ECUs and their 

connectivity to each other (using buses, for 

example), as well as to the external environment. As 

the density of implemented ECUs in a vehicle 

grows, the simultaneous failure of multiple ECUs 

due to a common fault (e.g. faulty software or burst 

exposure to high electromagnetic interference 

(EMI)) becomes increasingly likely. Moreover, both 

undesired coordinated behavior of interconnected 

ECUs and malicious attacks on connected ECUs are 

more likely the more ECUs there are within the 

same communication structure. 

Artificial Intelligence (AI) technologies have 

evolved enormously in recent years. Applications 

such as machine learning, computer vision, and 

neural networks have brought substantial 

advantages to different approaches and markets 

within multiple industries, widely known as the 

second AI wave. The engineering, design, and 

manufacture of embedded systems, and especially 

ECUs, are also commonly regarded as a third 

industrial wave, focusing on new revolutionary 

solutions (e.g. functional integration, energy 

efficiency, miniaturization) and disruptive 

technologies and techniques (e.g. system-level 

techniques, heterogeneous integration, 3D 

packaging, and assembly). However, it is still not 

well known how AI could be used to enhance the 

performance and reliability of conventional ECUs 

while remaining with only the usual single ECUs in 

a vehicle. It is highly desirable, if possible, to 

generate a new AI technology revolution within the 

"old" electronic component market, which covers 

such applications as automotive and industrial 

machinery. These AI-enhanced ECUs could bring 

substantial benefits to both automotive safety and 

new services/functions for other semiconductor 

markets. With extensive embedded electronics 

already present in vehicles and the foreseen 

extensive use of the Internet of Things (IoT), 

"smart" connected cities, and "highways" between 

various embedded systems in automobiles, trains, 

planes, etc., questions concerning privacy and trust, 

as well as potential dangers to public welfare (e.g. 

lives since it is about transportation systems), could 

be directly addressed given the context of ECUs. 

On the other hand, AI technologies could bring 

significant advantages to a large share of the 

market, while at the same time (in contrast to novel 

technologies) currently ready components and 

concepts could be broadly used, bringing revenues 

earlier compared to those usually experienced with 

capital-intensive technologies. The use of AI-

enhanced methods represents a vast, commercially 

attractive field with numerous application 

possibilities more widely than currently perceived 

in potential product development. 

 

1.1. Background and Significance 

Electronic control units (ECUs) are key components 

of most modern vehicles. They regulate, coordinate, 

and control various functions and systems. This 

includes the engine, transmission, body electronics, 

brakes, lighting, driver assistance, comfort, 

entertainment, safety, and vehicle communication 

network protocols. Automotive systems have 

shifted from mechanical architectures with purely 

mechanical control to highly networked 

architectures with decentralized electronic control 

systems. As a result, the use of ECUs has gradually 

increased from just a few devices to over 100 in 

state-of-the-art vehicles. In contemporary high-

performance vehicles, each ECU can handle over 
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1000 I/Os and operates at clock frequencies of over 

100 MHz. Over the last three decades, the degree of 

autonomy in vehicle control systems has increased 

significantly. The vast increase in design 

complexity raises the concern of performance and 

reliability with advanced innovations in ECUs 

based on artificial intelligence (AI). 

In recent years, AI has been proposed as a remedy 

to improve the performance and reliability of ECUs 

concerning safety. The AI use cases are being 

executed with different degrees of autonomy. 

Growing applications of AI functions in ECUs are 

being considered for large-scale deployment. 

However, there are unique challenges amidst the 

advanced innovations in ECUs enabling AI use 

cases. The sophisticated nature of artificial 

intelligence causes the underlying causes of faults 

and failures in their designs to remain hidden (i.e., 

are unexplainable). Other hardware-dependent 

implementation functions introduce frequent run-

time failures in vulnerable circuits, such as memory 

cells and arithmetic units. Combined with the 

growing ECU interconnections and the resulting 

higher cross-dependencies, existing automotive 

safety approaches might fall short in addressing 

these modern premature attributes. In addition, 

safety concerns specific to the AI use cases in ECUs 

have yet to be addressed in safety standards 

adequately. Consequently, questions arise on how 

the performance and reliability of ECUs with 

influences on safety could be enhanced concerning 

the advanced innovations based on AI. 

 

 
Fig 1 : The Functionality of Car ECUs 

 

1.2. Research Aim and Objectives 

The purpose of this study is to investigate how 

artificial intelligence (AI) can be used to improve 

the efficiency, reliability, and fault tolerance of 

electronic control units (ECUs) in automotive 

applications. It also seeks to identify the challenges 

and opportunities in this field, the reasons why 

these challenges matter, and the objectives to meet 

the identified objectives. The study focuses on three 

key research questions: "How can the use of 

artificial intelligence improve the efficiency, 

reliability, and fault tolerance of ECUs?", "What are 

the challenges and opportunities driven by AI 

regarding ECU design, testing, and design of 

experiments?", and "Why do the aforementioned 

challenges matter?". 

The expected outcomes of this research include a 

comprehensive review of innovative approaches 

that ECUs can adopt in the context of AI, strategies 

to mitigate the potential negative impact of AI on 

SOA ECUs that are not resilient against these 

innovations, direction for future research on gaps in 

the literature, and the advancement of knowledge in 

this field. The study also acknowledges three 

limitations: innovations using AI for analysis 

instead of design are not addressed, innovations that 

do not use ML for control are not considered, and 

only professional papers are reviewed, with the 

exclusion of patents, proceedings, or white papers. 

The justification of the research topic lies in the 

growing interest of car manufacturers in integrating 

AI into ECUs, which represents a significant 

transition in automotive history and poses 

challenges for existing ECUs. Overall, this research 

aims to contribute to the understanding of the 

effects of AI on electronic control units and provide 

recommendations for their design and testing in the 

automotive industry. 

 

2. Fundamentals of Electronic Control Units 

(ECUs) 

2. Fundamentals of Electronic Control Units 

(ECUs) 

2.1. Definition and Functionality 
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An Electronic Control Unit (ECU) serves as an 

embedded system within an automobile, designed to 

execute precise control strategies through 

sophisticated algorithms. Comprising a 

microcontroller, memory components, input/output 

interfaces, and a power supply, ECUs function 

independently or in conjunction with other units to 

regulate a myriad of subsystems. These encompass, 

but are not limited to, engine, automatic 

transmission, steering, and brake systems. Standard 

features of ECUs consist of closed-loop control and 

fault detection systems operating in real-time to 

enhance safety, energy consumption, and comfort. 

Increases in computational resources enable the 

incorporation of additional intelligent features, 

fostering the quest for higher flexibility, reliability, 

performance, and lower energy consumption. With 

the amplification of flexibility requirements, models 

are becoming more complex, and the significance of 

confirming their dependability escalates. 

Evolving development processes, marked by the 

growing dominance of model-based techniques, 

high-order non-linearities, control loops across 

multiple domains, and adaptivity, pose fresh 

challenges for verifier tools, previously employing 

linearization and off-line analysis methodologies. 

Fostered by the burgeoning complexity of models, 

the inadequacy of existing tools, alongside the 

virtual absence of formal analysis techniques for 

high-order non-linear systems, has led to the 

emergence of the analysis methodology termed as 

"verifying flow properties with abstraction 

refinement." 

2.2. Evolution and Types 

Initially, ECUs were purely analog devices, 

evolving into hybrid devices with an analog front-

end. ECUs are a crucial component of road 

vehicles, accounting for up to 30% of 

manufacturing expenses. Over the last decade, the 

need for performance improvements and growing 

comfort and safety needs have intensified efforts on 

automotive information technologies. This has 

motivated the tight integration of mechanical and 

electronic functions in support of increasingly more 

complex control applications. Most of the control 

applications rely on complex algorithms that 

include either multi-dimensional control laws, 

model-based estimators or controllers, or both. 

Over the past decade, researchers have developed 

rig modeling tools for the design of complex multi-

technology systems controlled by an embedded 

control system. The methodology is based on 

building mathematical models of the plant system 

and the controller in the same language and the 

same mathematical formalism, allowing the reuse of 

the models over the entire product life cycle and 

their seamless integration. This is important since 

the diversity of the products implies that they will 

go through different life cycle phases that impose 

the need for different types of models. 

 
Fig 2 : Electronic Control Units (ECUs) 

 

2.1. Definition and Functionality 

Electronic Control Units (ECUs) are critical 

components in modern automobiles, enabling and 

managing a myriad of functions within vehicles. 

Originally conceived to fulfill basic tasks like 

engine management and anti-lock braking control, 

their role has significantly evolved over the 

decades. Advanced ECUs now oversee more 

complex systems, such as steering and other safety 

functions, thanks to burgeoning processing 

capabilities and robust networks. 

An ECU is a digital electronic device designed to 

manage an operation or a group of operations in an 

automobile or other vehicle. It can be likened to the 

brain of the vehicle, responsible for gathering input 

data from various sensors deployed across the 

vehicle. This data typically relates to driving, 

vehicle status, and environmental conditions. Based 
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on the input data, an ECU decides how to respond, 

affecting mechanical components like throttle 

valves, actuators, and switches. These decisions are 

always made through mathematical models 

embedded within the ECU's software. This software 

will then generate a series of output signals, like 

switching an actuator on/off in a certain condition 

or activating a step motor to drive valves based on a 

control algorithm's output. In summary, an ECU 

receives data input, processes this data using 

mathematical models, and generates output signals 

to its actuators. 

The increasing integration of ECUs into 

automobiles is driven by the demand for enhanced 

vehicle performance and comfort, safety, 

convenience, and fuel efficiency. ECUs pose 

technological challenges as they typically deal with 

distributed networks of interconnected devices that 

work in unison to control complex tasks in real 

time. Types of ECUs are evolving to meet these 

challenges, moving from simple, low-power, non-

communicating systems using custom devices, 

dedicated software, and static, fixed hardware 

configurations, towards sophisticated, high-

performance, communicating, highly-integrated, 

and safety-critical systems using commercially 

available microcontrollers and standardized 

hardware and software platforms. These systems are 

becoming more complex due to the increasing 

number of implemented functions and growing 

interaction among functions. 

 

2.2. Evolution and Types 

In automotive applications, electronic control units 

(ECUs) mainly implement closed-loop control for 

regulating dynamic quantities (e.g., engine speed) 

or switching devices to achieve discrete (on/off) 

targets (e.g., anti-lock braking systems). 

Nevertheless, additional functions are gradually 

being implemented. Nowadays, a car may contain a 

constellation of several million lines of software 

code. ECUs need to cooperate within a networked 

architecture (e.g., using local area network 

communication protocols), ranging from an internal 

network on a vehicle to wide area networks (such as 

cellular, Wi-Fi, and satellite). This complex 

information technology (IT) infrastructure enables 

the deployment of advanced driver assistance 

systems (ADAS) or even fully autonomous cars, 

depending on the vehicle type. A considerable 

research effort is currently devoted to supporting 

the growth of neuronal networks of mutually 

connected ECUs. The rationale for such new 

architectures is improved aggregation of the 

massive amount of information collected by vehicle 

sensors. Deep learning models are promising in 

classifying complex data patterns (such as images 

or speech), not necessarily governed by known 

physical laws. Nevertheless, such models are 

usually opaque to their users: their trained 

parameter values might need further explanation to 

be understood in terms of physical intent or 

interpretability. Similarly, the reliability of these 

massively parallel computers becomes questionable 

in case of failure. 

Computational units of different types, as well as 

design paradigms (both of which are often 

intermixed), are found for ECU chip 

implementations. These types are largely dependent 

on technological advancements over the years. Two 

main MCU academic types prevailed until 1985: 

resource-constrained MIUs with dedicated 

architectures and interfaces for automotive function 

implementation, such as speech recognition, and 

general-purpose MCU families (like 8051 and Z8) 

with software-controlled on/off-chip sensors and 

actuators for various industry applications. In this 

regard, a description precedes MCU types 

chronologically starting from prior to 1985. 

Architecture/algorithm restrictions, such as fixed-

point signed data formats, simple flow control, and 

limited on-chip computational/memory resources, 

were required in MIUs. Then, specialized 

components and on-chip peripherals were 

developed, such as multipliers and bit-shifting 

circuits, synchronous clock generators, timers, on-

chip sensors, bus controllers, etc. 
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MCUs continued to dominate ECU implementation 

in the 1990s. Automotive-specific bus interfaces 

(e.g., CAN, K-Line), as well as dedicated 

components, also became standard in low-cost 

MCUs. European manufacturers initially prevailed. 

In 1988, Bosch announced the first fully integrated 

MCU with an on-chip bus interface and regulator 

for control applications on the vehicle. MCUs 

became more general-purpose starting in 1995, 

providing optional bus interfaces via exterior and 

conductive often patented components, resulting in 

different MCU versions for the same function. 

Nevertheless, computational architecture by 

manufacturers remained largely the same, mainly 

comprising sequential architectures. The fixed-

function within-sequence processing units constitute 

the higher (bus) level of the, possibly pre-event, 

sequential fixed-unit model while computing 

correctly with reactivity characterizes the lower-

level architecture type. No manufacturer pursued 

implementing new architectures until 2000. ECU 

paradigms became less strict on hardware 

restrictions, leaving design free on high-level 

specification (as H, GRAFCET, or UML in 

VHDL/Verilog). Meanwhile, as software became 

more complex, safety reliability directives became 

more rigorous (ISO 26262). Limitations of model-

based architectures were also highlighted for new 

generations of complex ECUs. 

 

3. Integration of Artificial Intelligence (AI) in 

ECUs 

 

The growing complexity of Advanced Driver 

Assistance Systems (ADAS) is increasingly relying 

on Artificial Intelligence (AI) to tackle the 

intensifying difficulties concerning the shift from 

pure scenarios to functional environments. Such 

challenges encompass the rising numbers of 

processing data and car signals, the responsibility 

and accountability of car manufacturers, and the 

unavoidable impact of accumulated errors during 

data processing. The culmination of these 

intricacies may lead to severe economic costs or 

even fatal accidents. 

In this scenario, a thorough understanding of the 

latest insights into AI tools and Artificial Neural 

Networks (ANN) has never been more significant 

for car manufacturers to ensure robust performance 

and reliability of their systems. Existing 

methodologies in terms of AI tools applied to ECUs 

will be introduced in the sense of opportunities and 

entrusted prospects. Three exploratory, non-

conventional AI methods are formulated at the 

functional level to counteract identified key 

limitations of state-of-the-art pathological scenarios: 

operational performance and reliability under 

industrial environments, flexibility about 

technological evolutions, and scalability in terms of 

supplier diversity, complexity, and several modules. 

The rapid increase in complexity of Automotive 

Electronic Control Units (ECUs), mostly as a 

consequence of the emergence of Advanced Driver 

Assistance Systems (ADAS), is leading to mounting 

difficulties concerning the qualification of systems. 

In addition, functional innovations for ADAS, like 

steer-finding or lane-change assist, may inject 

growing challenges in terms of economic cost or 

time-to-market, not only in pure scenarios but also 

in non-restricted environments, classified as a 

functional view. This concatenation of events may 

entail operational risks concerning the 

trustworthiness of systems and has acted, in the last 

years, as a turning point for intensifying 

investigations about beneficial Artificial 

Intelligence (AI) tools to test ECUs. 

A thorough understanding of AI principles has 

never been more significant by car manufacturers 

considering an increasing number of emergencies 

significantly concerning economic cost or time-to-

market; activities must be carried out intentionally. 

There is a need for a clear picture of AI uses 

embedded in previous standards and methodologies 

employed by their Tier-I suppliers. 

In the last decades, considerable advancement has 

been made in Artificial Neural Networks (ANN) 

and machine learning regarding computational 
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potency, the richness of data, and enhancement of 

applications. In the automotive domain, however, 

previous non-homogeneous works performed by 

other Tier-I suppliers and car manufacturers merely 

conform to fundamental rules of chaos-based 

methods and include only a partial inclusion of AI 

tools. Casualties and learning mechanisms, the basis 

of AI tools, are shortly established, describing the 

ability to self-organize complex structures and to 

learn in environments. 

Readily available methodologies combining 

traditional means of testing with two non-

conventional AI approaches into a clear unification 

of concerns, metrics, and tools, are briefly 

presented. In this way, evidence is ensured about 

the present unavoidability of AI tools for ADAS, 

and a broad understanding of the latest insights on 

non-conventional AI tools is provided, refining 

state-of-the-art approaches to defensive 

possibilities. By doing so, car manufacturers are 

incited to devote sufficient efforts and investments 

in the comprehension, simulation, and prototyping 

of desired functional environments. 

 
                  Fig 3 : ADAS / AD and ECU  

 

3.1. Machine Learning and Deep Learning 

Techniques 

Machine learning, a subset of AI, enables systems 

to learn from data without explicit programming. 

By analyzing patterns and relationships in large 

datasets, machine learning algorithms make 

predictions or decisions. Various algorithms exist, 

including supervised learning, where labeled data 

trains models, and unsupervised learning, 

identifying structure in unlabeled data. Common 

algorithms used in ECUs are decision trees, support 

vector machines, and clustering methods. 

Deep learning, a subset of machine learning, uses 

artificial neural networks to model complex data 

representations and patterns. Deep learning models 

with multiple layers automatically learn hierarchical 

representations from raw data, making them 

suitable for processing images, audio, and sensor 

data. 

Machine learning and deep learning techniques can 

enhance ECUs’ performance and reliability. 

Initially limited to simpler systems, they are now 

used in more critical control applications. ECUs 

have been subjected to novel cyberattacks due to 

car-to-car communication cybersecurity attacks. 

Anomaly detection methods using machine learning 

techniques have been proposed in the literature to 

protect the communication between ECUs in inter-

vehicle networks. Cyberattack detection methods 

using deep learning and recurrent neural networks 

based on time sequences of data have been taken a 

step further. Several efficient architectures of 

machine learning algorithms have been proposed in 

the last few years. These algorithms can be adapted 

to the specific application, allowing for the 

implementation of real-time monitoring/diagnosis. 

However, machine learning methods applied to 

ECUs also face challenges. Thanks to regulations 

on AI systems, specifically in the automotive 

industry, crucial features or aspects of each 

architecture can impact the performance of the 

proposed solutions. These challenges must be 

understood and considered in designing the 

architecture. To help users better understand these 

challenges, a bibliographic survey of the state of the 

art in machine learning and deep learning applied to 

automotive control units is presented. It identifies 

potential models that could be adapted to these 

types of systems according to their requirements 

and specifications. 

 

3.2. Benefits and Challenges 

The fast progress of artificial intelligence (AI) has 

opened up new possibilities for industry and 

society. The large amount of data, supported by the 

spread of sensors in human products, is a key 
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enabler, allowing advanced analytics to be 

performed. These analytics usually fall into two 

different categories: system and process modeling, 

and system and process control. A model describes 

how a component or process works; it can be a 

detailed mathematical description one can. Control 

strategies make use of a model to influence inputs 

such that a desired system behavior occurs. AI can 

enhance both modeling and control tools. Machine 

learning addresses the modeling category, while 

control technology includes reinforcement learning. 

New modeling and control methods are developed 

to narrow the gap between AI and the engineering 

professions. 

Electric powertrains are one of the technological 

advancements that will pave the way to overall 

cleaner propulsion systems in mobility applications. 

Electric powertrains are already in commercial use, 

and large investments for further improvements are 

underway. Regarding the electric machine, there is 

an increasing interest in analyzing and improving its 

performance. High-fidelity simulation tools exist 

and are continuously improved. Innovations in 

electronic control units (ECUs) can be realized in 

various directions, depending on how the focus on 

enhancing the existing system’s performance and 

reliability is defined. One clear conclusion is that AI 

can assist in all directions. This development is 

preceded by a discussion of benefits and challenges 

that need to be addressed to realize the opportunities 

AI presents. 

The popularity of artificial intelligence (AI) in 

society and industry is increasing rapidly. With AI, 

new insights can be obtained from data, and 

inherent autonomy can be provided to established 

traditional processes. The realization of this 

opportunity is currently hampered by a lack of 

dissemination of knowledge between the 

engineering professions and AI specialists. 

Engineering professions involve science, 

technology, mathematics, and applications, and 

commonly have a particular application area. 

Regarding mobility applications, engineering 

professions include electric powertrains and 

especially electric machines. Both control 

technology and modeling and simulation tools are 

present, where the accuracy and calculation speed 

are balanced against each other. AI specialists focus 

on advanced analytics and know how to use data to 

obtain robust, generalizable insights, but usually, 

their area of application knowledge is limited. 

 

4. Advanced Innovations in ECUs 

As the automotive industry continues to advance at 

a rapid pace, innovation in vehicle electronics and 

onboard intelligent systems remains a key focus. 

Recent advances in artificial intelligence (AI) are 

now making it possible to enhance the performance 

and reliability of electronic control units (ECUs) in 

modern vehicles affordably. The latest AI and deep 

learning algorithms can enhance the efficiency and 

reliability of ECUs in high-volume applications. 

This paper reviews several advanced innovations 

and applications of AI designed to improve vehicle 

performance, efficiency, and reliability, including: 

- Automated, AI-based innovations in software and 

control of sensor fusion and multi-sensor integration 

- Automated, AI-based innovations in hardware, 

algorithms, and control of predictive maintenance & 

health monitoring of ECUs 

While advanced innovations of ECUs that use AI 

will be explored, the focus will be on the enhanced 

performance and reliability of standard ECUs. 

Some of these innovations are based on extensive 

research and significant investment in the 

automobile industry by the developers of these 

technologies. 

Over the last few decades, the development and 

mass production of a variety of highly innovative 

automotive sensors have enhanced the performance 

and reliability of vehicles. This is similar to the 

electronics and computers in the smart device 

revolution, enabling advanced safety, control, and 

navigation systems. As highly integrated micro-

electromechanical systems (MEMS) technology, 

and other high volume, and low-cost devices have 

become mainstream, dozens of novel automotive 

sensors have been developed by the leading 
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suppliers of the automotive industry. The 

availability of so many novel highly innovative 

automotive sensors has opened the door to a 

multitude of potential applications, either new ones 

or upgraded versions of existing ones. But, the past 

decade has instead been characterized by a very 

slow and highly conservative integration of these 

new types of sensors. One important reason for this 

inconsistency between the advancements of 

automotive sensors and their slow integration stems 

from the difficulty in synthesizing, fusing, and 

controlling the complex interactions of the multiple 

types of these high-dimensional and often 

conflicting data streams of sensory variables. 

To address this problem, a sequence of highly 

innovative AI-based multisensory systems and 

algorithms for the smart fusion and control of a 

combination of novel sensor technologies has been 

designed and developed. These automated, AI-

based sensors, sensor fusion hardware, and 

algorithms have been tailored to the multi-market 

needs of suppliers in these and other automobile 

domains. The performance of these AI-based sensor 

systems, multi-sensor integration hardware, and 

algorithms have been validated by numerous 

applied research and development projects on well 

over a hundred different applications, each 

possessing distinct vehicle and usage conditions, as 

well as local road/path infrastructures. 

With the growth of vehicle electronification and an 

increase in the number of onboard ECUs, the 

robustness and reliability of these controls & 

electronics themselves in the automotive domain 

have become highly critical issues. The 

unprecedented complexity of modern ECUs has 

inhibited current means of design and design 

process automation for ensuring robustness, 

reliability, and longevity. Extreme environmental 

conditions and vehicle characteristics aggravate this 

situation further, leading to poor ECU performance, 

random functionality, and ultimately their failure. 

To address this design challenge, automated 

hardware, algorithm, and control innovation for 

predicting the health & monitoring and maintaining 

the performance of ECUs have been developed. 

Such innovations are essential for them to stay 

competitive, as the automobile market is 

characterized by a high degree of competitiveness, 

massive economies of scale, and a substantial need 

to operate on particular niche markets at the same 

time. Examples of the application of these 

innovations will also be provided. 

 

4.1. Sensor Fusion and Multi-Sensor Integration 

Electronic control units (ECUs) in automobiles are 

relying more on different sensors to accommodate 

more advanced functions. In addition to the 

traditional sensors, such as speed sensors, camera 

sensors, GPS sensors, lighthouses, and radar, ECUs 

are being complemented with new sensors, such as 

LiDAR, 3D sensors, and ultrasonic sensors, to 

achieve vehicle autonomy. However, deploying 

many diverse sensors in automobiles raises multiple 

challenges. First, the amount of collected data 

increases dramatically, but safety-critical systems 

have strict limitations on the amount of data 

processed on an ECU. Second, the kind of data 

stream acquired from different sensors is quite 

different. Hence, the disparity between the data 

stream types emerges, which must be resolved as 

well. Third, multiple sensors with different 

specifications come to be integrated, and this leads 

to also different costs and different levels of 

computation to be dealt with. ECUs in advanced 

driver-assistance systems (ADAS) and autonomous 

vehicles (AVs) need to cope with these newly 

emerged challenges. 

To combine the benefits of all and overcome the 

limitations of each sensor, fusion, and integration of 

different sensors are introduced. In computer vision, 

cameras are often integrated with a LiDAR sensor 

to compensate for their weaknesses. Such pairing is 

also seen within the same kind of sensor; short- and 

long-range radar sensors are compared and 

combined. Therefore, a lot of interest is focusing on 

the integration of multiple sensors. Different sensor 

types deliver inputs that vary in quality, format, and 

coverage. The challenge is how to fuse or combine 
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the information from these various data sources so 

that the overall quality is improved compared with 

the individual data sources. The data fusion 

approaches can be classified into two categories: at 

the system level; and the data level. In the context 

of data fusion, the data sources to be fused are 

treated as digital signals or datasets. The data fusion 

approaches can also be categorized as optimal and 

low-complexity methods. The literature survey 

focuses on low-complexity sensor fusion 

approaches in embedded system applications. 

The purpose of the survey is to identify promising 

design methodologies for sensor fusion and multi-

sensor integration in ECUs. The variety of sensors 

will be classified, and the level of fusion and 

integration of each design methodology will be 

illustrated. Moreover, the rationale behind an 

embedded system design is highlighted, such as a 

design for function, a design for cost, a design for 

constraints, and a legacy design. 

 

 
Fig  4 : Multi-sensor Fusion for Robust Device 

Autonomy 

 

4.2. Predictive Maintenance and Health 

Monitoring 

An important innovation in the automotive industry 

is predictive maintenance and health monitoring 

(PMHM), which aims to ensure the reliability, 

performance, and safety of electronic control units 

(ECUs). PMHM enables real-time awareness of the 

health status of controlled systems, processes, or 

components in vehicles, and the prediction of the 

remaining useful life (RUL) of ECUs based on their 

degradation patterns. With predictive capabilities, 

effective maintenance actions can be planned to 

minimize the occurrence of faults in road vehicles. 

Increasing connectivity in vehicle-to-vehicle (V2V) 

and vehicle-to-vehicle (V2X) fosters the adoption of 

PMHM, and the integration of artificial intelligence 

(AI) solutions like machine learning (ML), deep 

learning (DL), and fuzzy logic approaches allows 

for processing complex measurement datasets with 

multiple modalities and types. As a result, PMHM 

is becoming ubiquitous in several sectors, notably 

aerospace, shipping, and automotive. 

Just as new electronic components have been 

introduced, new software algorithms have also been 

applied. PMHM comprises several elements, 

including vehicle data collection systems, data 

analytics tools, and onboard predictive data models. 

In recent years, health monitoring and fault 

detection methods for ECUs in vehicles have been 

intensively researched. Traditional approaches are 

usually based on rule-based thresholds, model-

based methods with residue generation, and data-

mining techniques. However, these methods might 

not perform well when applied to new ECUs based 

on AI. The introduction of new brand and 

technology ECUs raises questions about the 

competence of previous PMHM systems, which 

must be redesigned or transferred to new 

technologies. 

Machine learning enables the generation of data-

driven PMHM models without prior knowledge of 

the background system. Whenever smart sensors or 

features are available, more comprehensive health 

diagnosis modeling has become viable due to the 

introduction of product design technologies able to 

monitor the wear level and degradation state of the 

monitored system. However, for many ECUs, only 

limited measurement data that cannot be segmented 

into meaningful activities or do not have a 

continuous measure of the health state after 

installation are available. Novel Deep Learning 

approaches have recently been introduced to help 

overcome these issues, as they can allow for health 

state diagnosis based on dense unsupervised data. 
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PMHM enables real-time awareness of the health 

status or conditions of the controlled system, 

process, or component, and prediction of the 

remaining useful life (RUL). Predictive capability 

in health monitoring allows for predicting the health 

state of the monitored system as a function of time. 

With this predictive capability, effective 

maintenance actions can be planned where the 

occurrence of faults would be minimized in road 

vehicles. This increased connectivity in vehicle-to-

vehicle (V2V) and V2X also fosters the adoption of 

PMHM. With the burgeoning growth of the 

connected vehicle industry, the integration of 

artificial intelligence (AI) solutions such as machine 

learning (ML), deep learning (DL), and fuzzy logic 

approaches, among others, has become possible. 

These AI solutions allow for processing complex 

measurement datasets with multiple modalities and 

types. 

 

5. Case Studies and Applications 

Both advanced innovations in electronic control 

units (ECUs), artificial intelligence (AI), and the 

implementation of thriving applications have the 

potential to improve performance and reliability in 

numerous areas. Two implementations of this 

innovation are presented and discussed: 

autonomous vehicles within the automotive industry 

and predictive maintenance in industrial 

automation. 

5.1. Automotive Industry 

One of the most prominent implementations of AI 

innovative ECUs in vehicles is the development of 

self-driving and autonomous vehicles. Self-driving 

vehicles are built smartly, with the thesis that 

computing power increases much faster than vehicle 

complexity. The evolution of simple driver 

assistance functions such as adaptive speed control 

and lane-change assistance to highly complex 

functions such as automated parking or fully self-

driving scenarios developed over time and will 

continue to mature in the future. That crisis- and 

accident-free vehicles operating with maximum 

safety and performance are realized is desired. 

Wireless communication of vehicles with vehicles, 

the cloud, and the driving environment enables the 

acquisition of enhancement information in cities 

and road networks and within vehicles. Fleet 

applications, assistance through other vehicles, and 

internal vehicle communication can assist in 

complex driving scenarios. IT infrastructures for 

cloud-based data analysis are continuously 

improved, and necessary regulations for data 

privacy and data access are either developed or 

realized in a regulated manner. AI in vehicles for 

vehicle control, perception, decision-making, 

evaluation, prediction, and cooperation prevents 

frustration and stress in driving and contributes to 

more desirable mobility in the future. 

5.2. Industrial Automation 

Another implementation is AI-enabled ECUs for 

predictive maintenance in industrial automation. In 

such implementations, a huge number of intelligent, 

sensor-equipped conversion machines, robots, and 

mobile, manned, and unmanned vehicles 

continuously work and cooperate within 

manufacturing systems and supply chains for 

continuous digital delivery of products with extreme 

accuracy and reliability. Central instances for the 

analysis of huge amounts of data help detect 

deviations from designs and virtual models, such as 

deviations from expected product parameters or 

processing times. Those deviations are first 

interpreted as malfunctions leading to system 

deterioration or failures. Suitable corrective 

measures, such as the adjustment of process 

parameters or the transport of tools to machines, are 

derived in a semi-automated manner or taken 

automatically to maintain or restore the desired 

behavior. Redundant monitoring and controlling 

steps implemented in the design of the machines 

and the systems avoid losses in quality and states of 

operational failure. Suitable improvement measures 

for the robustness of the system as a whole are 

derived, such as adaptations of the machine designs 

or the manufacturing processes. 

 

5.1. Automotive Industry 
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Electronic Control Units (ECUs) have become an 

essential part of the automotive industry, especially 

with the development of smart vehicles in the 

ongoing century. With up to 90 ECUs built into one 

modern vehicle and a surge in demand for safety, 

comfort, and entertainment features, the 

development of ECUs has become an advanced 

topic in the automotive industry. These ECUs have 

become increasingly powerful with emerging 

technologies such as higher computational 

hardware, advanced semiconductor technologies, 

and the evolution of functionalities and 

applications. There has also been a paradigm shift 

to intelligent technologies such as Artificial 

Intelligence (AI) in various domains, including the 

automotive industry. The automotive safety 

standard, ISO 26262, provides guidelines for the 

automotive safety lifecycle. Hardware requirements, 

fault models, and architectural requirements of 

ECUs are included in the standard, and the general 

concept of the standard is illustrated. 

Standard methods for the development of safety-

critical ECUs and risk parameters under which 

requirements are satisfied are outlined, along with 

open research challenges in the automotive industry 

and the ECUs. AI algorithms, especially deep 

learning neural networks, have become widely 

adopted, and their vulnerability to adversarial 

samples has emerged as a critical area for further 

research in ML systems and model explainability. 

Furthermore, there is a need for a standardized 

automotive AI safety process to comprehensively 

address safety requirements during the lifecycle of 

automotive AI/control ECUs (C-ECU). The 

standard process concept, its elements, necessary 

detailed processes, and connections to existing 

standards such as ISO 26262, ISO/PASI 88500, and 

ISO 21448 are illustrated. The implementation of 

these standards within the development lifecycle of 

AI C-ECUs is also outlined in the automotive 

industry context. The addition of AI safety elements 

to existing safety standards is illustrative, and the 

usage of white- and black-box development 

processes is elaborated on. 

A concept for a standardized automotive AI safety 

process is presented, addressing requirements for 

automotive AI/control ECUs (C-ECUs) during their 

entire lifecycle. Elements, detailed processes 

needed, and connections to existing standards are 

outlined, and the CI safety implementation concept 

with the development lifecycle is tuned to the 

automotive industry. AI safety elements are 

illustrated regarding existing safety standards, and 

white-/black-box development processes are 

elaborated on. 

 

5.2. Industrial Automation 

The intelligent open-loop and closed-loop control 

systems with integrated E-CU (engine control unit), 

B-CU (brake control unit), T-CU (transmission 

control unit), and I-CU (intelligent control unit), as 

optional advanced options for automotive driving 

with mobility minding in industrial automation, 

collaborative robotics, agriculture aids, assisted 

driving for older driving, independent driving for 

disabled and elderly, rather than human-only 

control as traditional options. It is expected that the 

intelligent open-loop and closed-loop control 

systems with integrated E-CU, B-CU, T-CU, and I-

CU, as optional advanced options for automotive 

driving with mobility minding in industrial 

automation, have numerous side benefits including 

reduction of fuel consumption, carbon structure, and 

other harmful greenhouse emissions, accident 

assurance, on traffic accident casualties and 

avoidance of damages to properties, more secure 

privacy of used data and generally infrastructure 

free and others. 

The active and passive safety measures are 

redefined. Teaching motion trajectories and speed 

profiles with no other safety devices or redundancy 

is no longer sufficient for some advanced options 

(e.g. independent driving for disabled and elderly, 

brain stem death driving for others). According to 

the safety requirement of the aviation industry, not 

more than 1 accident happens in 1 billion 

operations. As much as 20 doubles redundancy for 

an application in a system. As most road accidents 
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are due to human errors, a value of Montier has 

been redefined as biopsy parameters for motion 

trajectory (affordable and secure trajectory) in 

addition to biopsy parameters for speed profile 

(affordable, secure, tragedy, and robust speed 

profile). 

 
Fig 5 : Advantages of Industrial Automation  

 

The biopsy parameters for affordable biopsy 

parameters for motion trajectory and speed profile 

with related filters are developed. The open-loop 

and closed-loop control algorithms are developed 

with minimal anticipation distance on biopsy 

parameters for time delay systems as complex E-

CU with the engine, combustion chamber, and 

turbine as dynamically coupled and each is 

humidity or no-humidity, 2 or 3-way catalyst, stage 

on-off, and others. Despite increasing in capability 

and affordability, as noted extensive field tests and 

benchmarked tests with prototypes equipped with 

three or five redundancies such as wheel sensors, 

motor torque sensors, and inertial sensors, the 

guaranteed error bounds of essential biopsy 

parameters with an independent perpetual 

estimation of accidents, intrusion, and faults 

detections and indications are within desired 

accuracy (within 100m of selected lane, road, or 

trajectory; within 5 degrees of the selected static 

path) for turning on and off visibility landmarks, 

mounted topocentric or egocentric. As robustness 

concerning interference, supply voltage, 

temperature, and motion condition. 

 

6. Conclusion 

 

The advancements in electronic control units 

(ECUs) - the computers that control various 

electronic systems in modern vehicles - are paving 

the way for a new era in automotive engineering. 

With more sophisticated ECUs, the amount of 

hardware needed per vehicle is rapidly expanding, 

which can strain manufacturers' resources for 

development and production. As a result, these 

manufacturers need new and highly integrated 

solutions for ECUs. Simulation and automated 

development tools are available today to accelerate 

ECU development and verification, and 

semiconductor manufacturers provide new 

integrated multi-core microcontrollers with 

sufficient performance for future ECUs. 

AI-based solutions for vehicle control may be 

required to meet the anticipated regulatory 

requirements, and they need to be developed and 

verified with a suitably high level of confidence. 

AI-based controller legal requirements are expected 

to be in effect by the early 2030s. AI's hardware 

implementation in ECUs must both meet the 

increasing computational performance requirements 

of new safety controller applications and remain 

cost-efficient. A paradigm shift from dedicated and 

application-specific hardware solutions towards the 

adoption of general-purpose computing platforms 

may be needed to handle AI's costly development 

cycle, extensive tooling chain, and platform lock-in 

risks. Electronic control units (ECUs), or domain 

control units (DCUs), handle dedicated functions in 

the vehicle that, in either case, become more 

complex and interlinked as advanced driver 

assistance systems (ADAS) emerge. 

The number of ECUs per vehicle increases; the 

amount of electronic components spreads geometry-

wise and approaches the level of complexity that 

computing systems have had for a long time in 

other application domains such as aerospace and 

avionics. At some point, trends hitting other 

domains, such as central computing platforms or the 
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adoption of many-core technology, will also need to 

be replicated in automotive as TeraMacs of 

performance is needed in future domain-level 

control units to handle the data from thousands of 

sensors per vehicle and to run highly complex 

safety control algorithms. There is excellent 

development and simulation tooling on the software 

side but it cannot alleviate the exponentially 

increasing verification gap between complex 

software and the predominantly manual and 

laborious verification process on existing 

automotive microcontrollers. The future looks 

bright for advanced, highly integrated, and complex 

control units where semiconductor manufacturers 

have enough scalable technology options; however, 

the boost in performance challenges the functional 

safety paradigm of today. Nonetheless, transitioning 

is not only a conservative risk-averse process, so 

digital hardware security, safety, and reliability by 

design concepts need to steer the development of 

new platforms. 

 

6.1. Future Trends  

The development of advanced electronic control 

units (ECUs) has led to the emergence of exciting 

innovations that will set the stage for future trends 

in the automotive industry, as the field continues to 

radically change and transform to accommodate the 

challenge of autonomous driving and breakthrough 

applications. 

In recent years, the focus on advanced driver 

assistance systems (ADAS), which are precursors to 

autonomous driving of future vehicles, has driven 

the exponential growth in, and changes to, 

automotive electronic systems. Underpinned by 

artificial intelligence (AI), machine learning (ML), 

and deep learning (DL) technologies, new advanced 

vision-perceiving systems are emerging. These 

consist of a cooperative fusion between multiple 

technologies such as cameras, radars, and lidars 

with state-of-the-art high-performance hardware, 

dedicated ECUs, and new highly competitive 

intelligent algorithms. These technologies generate 

an extreme increase in computing capability, which 

opens up new and challenging opportunities for 

advanced and sophisticated system designs. 

This comes with an exciting range of developments 

related to the increasingly critical and challenging 

domain of system and software reliability, 

robustness, safety, and security. In addition to 

catching up with automotive-specific cybersecurity 

solutions and protection mechanisms, there is a 

multitude of challenges to IC, component, and 

module (chipset) level radiation and fault detection 

for both safety-critical and non-safety devices in a 

safety-critical domain, as well as design solution 

proposals that withstand environmental extremes. 

ECUs of future vehicles will gradually be 

standardized into application domains where 

domain controllers use network-on-chips (NoCs) 

based on Ethernet. New possibilities for on-the-fly 

frequency and voltage scaling capable of DF-based 

fault tolerance architectures are envisaged. 

The upcoming Internet of Vehicles (IoV) is not only 

concerned with the vehicles' interior and automotive 

networks but also encompasses the vehicles' 

environment and infrastructure. This opens up the 

field to various threats like malicious message 

spoofing, stigmatized cars, and denial-of-service 

attacks. Security verification and risk assessment 

methodologies should take into account the 

interdependencies between the vehicle and its 

surroundings, offering a systematic view of 

potential issues. Other challenges include defining 

worldwide safety and performance criteria 

applicable to vehicles of different manufacturers, 

taking into account the social acceptance of new 

technologies, and ensuring a safe transition from a 

hybrid to a fully autonomous system, adapting legal 

framework, liability, and insurance issues. Social 

acceptance is paramount to show advantages and 

early positive experiences. 

Considering current trends in consumer electronics 

as well as in the transportation systems market, 

ECUs in motor vehicles are rapidly evolving from 

dedicated components for specific tasks into highly 

complex multidisciplinary and multifunctional 

heavy computing computational platforms with 
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application domains that integrate critical 

components in terms of safety, security, and the 

economics of mobility performance. Future designs 

and architectures of these ECUs shall consider the 

extreme impact of component malfunction, failure, 

or non-genuine state arising from either electronics, 

hardware, or software faults or human error. 
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