
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 3 March 2013 Page No. 798-805

TRANSFORMATION OF UML ACTIVITY DIAGRAMS INTO PETRI NETS

FOR VERIFICATION PURPOSES

 Bhawana Agarwal

M.Tech Scholar (CSE), Mewar University, Chittorgarh, India
Email:agarwalbhawana06@gmail.com

Abstract:
In the software engineering world, modeling has a rich tradition, dating back to the earliest days of programming. The most recent
innovations have focused on notations and tools that allow users to express system perspectives of value to software architects and
developers in ways that are readily mapped into the programming language code that can be compiled for a particular operating
system platform. The current state of this practice employs the Unified Modeling Language (UML) as the primary modeling notation.
The UML allows development teams to capture a variety of important characteristics of a system in corresponding models.
Transformations among these models are primarily manual. However, potential faults that violate desired properties of the software
system might still be introduced during the process. Verification technique is well-known for its ability to assure the correctness of
models and uncover design problems before implementation. This paper presents a set of rules that allows Software engineers to
transform the behavior described by a UML 2.0 Activity Diagram (AD) into a Petri Net (PN). The main purpose of the transformation
to Petri nets is to use the theoretical results in the Petri nets domain to analyze the equivalent Petri nets and infer properties of the
original workflow. Furthermore, we implement a tool to support the transformation process.

Key words: Activity Diagram, Petri Nets, Verification and
Validation, AD2Petri.

1. Introduction

Although complex systems are, by their nature, hard to build,
the problem can be ameliorated if the user requirements are
rigorously and completely captured. This task is usually very
difficult to complete, since clients and developers do not use
the same vocabulary to discuss. For behavior-intensive
applications, this implies that the dynamic behavior is the
most critical aspect to take into account. This contrasts with
database systems, for example, where the relation among data
types is the most important concern to consider. A scenario is
a Specific sequence of actions that illustrates behaviors,
starting from a well defined system configuration and in
response to external stimulus. Petri nets are used to formalize
the behavior of some component, system or application,
namely those that have a complex behavior. Since Petri nets
are a formal model, they do not carry any ambiguity and are
thus able to be validated.

2. Background

In this section we briefly introduce UML Activity Diagrams

and Petri Nets.

2.1 Activity Diagram

Activity diagram [1] is basically a flow chart to represent the
flow form one activity to another activity. The activity can be
described as an operation of the system. So the control flow is
drawn from one operation to another. This flow can be
sequential, branched or concurrent. Activity diagrams deals
with all type of flow control by using different elements like
fork, join etc.
The focus of activity modeling is the sequence and conditions
for coordinating lower-level behaviors, rather than which
classifiers own those behaviors. These are commonly called
control flow and object flow models. The behaviors
coordinated by these models can be initiated because other
behaviors finish executing, because objects and data become
available, or because events occur external to the flow.

2.2 Petri Nets

A Petri net (also known as a place/transition net or P/T net) is
one of several mathematical modeling languages for the
description of distributed systems. A Petri net[2,3] is a

http://www.ijecs.in/�

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 799

directed bipartite graph, in which the nodes represent
transitions (i.e. events that may occur, signified by bars) and
places (i.e. conditions, signified by circles).
A Petri net consists of places, transitions, and arcs. Arcs run
from a place to a transition or vice versa, never between places
or between transitions. The places from which an arc runs to a
transition are called the input places of the transition; the
places to which arcs run from a transition are called the output
places of the transition. In the diagram of a Petri net, places
are conventionally depicted with circles, transitions with long
narrow rectangles and arcs as one-way arrows that show
connections of places to transitions or transitions to places.

3. Activity Diagram to Petri net Model
Transformation Rules

In this section we show how to translate some of the High-
level operators available in the UML 2.0 AD, into a
behaviorally equivalent PN. To accomplish this, we explain
the semantics of the operator, we describe in an informal way
how the transformation is achieved, and additionally we show
the result of applying these ideas to some illustrative
examples.

3.1. Transitions from one Activity to another activity

We consider a semantic for AD with an order relation between
control flow such that the emission requires the reception of
the preceding action. The AD presented in Fig. 3.1.1
represents an interaction without high-level operators. There
are two Actions and one control flow between them. The
obtained PN (see Fig. 3.1.2) associates a transition for
message in the AD.

Fig. 3.1.1: A UML Activity diagram

Fig 3.1.2 Obtained Petri Net

3.2. Transition from one Activity to Parallel
Activities (using fork):

Fig. 3.2.1 represents a parallel interaction. In figure after
Action 1 two transitions namely Action 2 and Action 3 occurs
parallel. The obtained PN is shown in Fig 3.2.2.

Fig 3.2.1: (a) A UML Activity diagram Action 1

Action 2

Action 1

Action 2

Action 1

Action 2 Action 3

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 800

Fig 3.2.2 Obtained Petri Net

3.3. Transition from two Parallel Activities to one
Activities (using join):

Fig 3.3.1. Indicate two parallel Activities namely Action1 and
Action 2 combines in Action 3. This denotes the end of
parallel processing. Fig 3.3.2 shows its corresponding PN.

Fig 3.3.1 A UML Activity diagram

Fig 3.3.2 Obtained Petri Net

3.4. Transition from one Activity to Parallel
Activities (using decision):

The AD represented in Fig 3.4.1 shows that If condition
Action 1, then perform action 2, else do action 3. This
signifies If-Else statement. Its corresponding PN is shown in
Fig 3.4.2.

Fig 3.4.1 A UML Activity diagram

Action 1

 Fork

Action 2 Action 3

Action 1 Action 2

Action 3

Action 1 Action 2

 Join

Action 3

Action 1

Action 2 Action 3

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 801

Fig 3.4.2 Obtained Petri Net

3.5. Transition from two Parallel Activities to one
Activities (using merge):
Fig 3.5.1 shows that If condition Action 1 and condition
Action 2 holds, then do Action 3 i.e. merging two actions. The
transformation of this AD into PN is shown in Fig 3.5.2.

Fig 3.5.1
A UML Activity diagram

Fig 3.5.2 Obtained Petri Net

3.6. Looping Transition:

A loop node is a structured activity node. In fig 3.6.1 looping
occurs in second condition of decision i.e. in Action3 indicates
that While condition true do Action 3. The Fig 3.6.2 indicates
looping in Petri nets.

Fig 3.6.1 A UML Activity diagram

Fig 3.6.2 Obtained Petri Net

3.7. Precedence Transition:

Precedence means Action 1 should precede Action 3. This is
shown in Fig 3.7.1.Its corresponding PN shown in Fig 3.7.2.

Action 1

Action 2 Action 3

Action 1 Action 2

Action 3

Action 1 Action 2

Action 3

Action 1

Action 2 Action 3

Action 1

Action 2 Action 3

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 802

Fig 3.7.1 A UML Activity diagram

Fig 3.7.2 Obtained Petri Net

3.8. Timing Transitions:

The result value contains the time at which the occurrence
transpired. Such an action is informally called a wait time
action. This is shown in Fig 3.8.1 indicates after k seconds do
Action 1. Its corresponding PN is shown in fig 3.8.2.

Fig 3.8.1 A UML Activity diagram

Fig 3.8.2 Obtained Petri Net

4. Running Example

To validate the proposed transformation rules we apply them
to one Example namely Order Management System. The
following is an example of an activity diagram for order
management system. In the diagram Seven activities are
identified which are associated with conditions. One important
point should be clearly understood that an activity diagram
cannot be exactly matched with the code. The activity diagram
is made to understand the flow of activities and mainly used
by the business users.

Action 1

Action 2

K sec

Action 2 Action 3

Action 4

Action 1

Action 1

Action 2 Action 3

Action 4

Action 1

Action 2

K sec

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 803

Fig 4.1 A UML Activity Diagram

Fig 4.1 shows the AD of Order Management System. After
apply all the rules defined in section 3 we convert this AD into
PN shown in Fig 4.2.

Fig. 4.2 shows the PN obtained from the AD in Fig. 4.1, where
we can find transitions which are links to a PN [4]. An
Activity diagram can be mapped to a Petri net which includes
all kinds of control flow [5]. Here activity and fork nodes are
mapped to Petri net transitions [6] and start, end, and decision
nodes are mapped to places. Connections are mapped in such a
way that always there is an arc either from transition to place
or place to transition. The converted Petri net model can be
represented using Petri Net Markup Language (PNML) [7].

PNML is an XML based interchange format for Petri nets.
This is useful for importing and exporting a Petri net model.

Fig 4.2 Obtained Petri Net

5. Transforming from Activity Diagrams to

Petri Nets

Based on the mapping rules in [8], we construct a
Pseudo code to transforming activity diagrams to Petri nets
and implement in our tool to provide automatic transformation
support. The pseudo code is described in Table 1. The
transformed Petri net is a bi-simulation of the activity
diagram, which means they are semantically equal. So we can
achieve the verification of the activity diagram by verifying
the equivalent Petri net against same system properties.

Receive
order

Fill order Send
Invoice

Overnight
Delivery

Regular
delivery

Receive
Payment

Close
Order

Receive order

 Fork

Fill order Send order

Overnight
Delivery

Regular
Delivery

Receive
payment

 Merge

Close order

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 804

Read Activity Diagram
{
set source node of edge=Ni;
set similar place or transition of Ni=Si;
set target node of edge=Nj;
set similar place or transition of Nj= Sj;
set place=P;
set transition =T;
set subsidiary transition= Ts;
set subsidiary place= Ps;
set Arc=A;
set token=M0;
for(each node= N)
{
if(N= initial node, final node, decision node, or
merge node);
{
Create similar P;
}
else
{
Create similar T;
}

for(each edge= E)
{
if (Ni and Nj= initial node, final node, decision node,
or merge node)
{
Create Ts;
Create A= Si to Ts;
Create A= Ts to Sj;
}
else if(Ni and Nj=action node, fork node, join node)
{
Create Ps;
Create A=Si to Ps;
create A=Ps to Sj;
}
else
{
Create A= Si to Sj;
}

for(each P without incoming A)
{
Create M0;
}

display PN
}
}
}

Table 1 Pseudo code for transforming Activity diagram into
Petri net

 6. Tool Implementation

We implemented a tool named AD2petri based on Eclipse java
Platform. As Figure 5 shows, the full function of tool which is
consisting of 4 main parts: Activity diagram generated in
UML2 plug-in of Eclipse, AD2petri, Petri-Net, Petri- net tool
for Verification. The AD2petri converts an activity diagram to
a Petri net automatically. The inputs of AD2petri are UML
diagrams designed by UML2 in the form of XML file and the
outputs of the tool are Petri net files which are readable for
various Petri net tools to perform verification tasks.

Fig 6.1 Framework of AD2Petri

 7. Analysis of Petri net
The Petri net is subjected to three analysis methods namely,
Liveliness, Boundness and Reachability analysis[10][9].The
liveliness is determined through the absence of Deadlocks in

the Petri Net[11] while Boundness is computed through a P-
invariant calculation. The result or analysis[12] confirms that
the Petri net is live and bounded. Through the P-invariant
calculation it is revealed that the Petri Net is safe also.
 8. Conclusion and Results

In this paper we show a set of rules and tool implementation to
transform AD into equivalent PN. In UML 2.0, AD is quite
expressive and this work explores the new constructors that
allow several plain activities to be combined in a unique AD.
Thus the rules allow the generation of a PN that covers several
sequences of behaviors. The Verification result shows whether
the Petri net satisfy the requirements or not this work is in
progress so we plan to develop it further. In this work we only
have a validation of transformation through analysis of UML
AD.
In future we plan to implement any of the Petri net verification
tool to this project so we automatically get verification results
of the inputted AD.

 9. Acknowledgement

Activity diagram
generated in UML2
plug-in of Eclipse

Activity2petri

Petri-Net
Petri- net tool for
Verification

 Bhawana Agarwal, IJECS Volume 2 Issue 3 March 2013 Page No. 798-805 Page 805

I would like to thank Mr. B.L Pal and Mr. G. Balakrishna for
his support, guidance, and patience they gave throughout
writing this paper. Their encouragement and dedication is
numerous to mention.

 10. References

1. OMG, OMG Unified Modelling Language (UML)
Superstructure 2.1, available at www.omg.org. 2007.

2 . Christensen, S. and L. Petrucci, Modular Analysis of Petri
nets. The Computer Journal, 2000. 43(3): p. 224-242.

3. Petri Nets: Properties, Analysis and Applications, by Tadao
Murata, in: Proceedings of the IEEE, vol. 77, no. 4, April
1989

4. Zhou CH,The modeling of UML diagrams based on the
Petri Net[M], Shandong University of Science and
Technology. 2004: 19-31.

 5. Harald Storrle, Semantics of UML 2.0 Activities Workflow
management coalition [Online].
http://www.wfmc.org/standards/docs/TC-
1011_term_glossary_v3.pdf

6. Carl Adam Petri and Wolfgang Reisig (2008) Petri net.
Scholarpedia, 3(4):6477.

7. Billington et al., The Petri Net Markup Language:
Concepts,Technology, and Tools [Online]. Available:
http://www.informatik.huberlin.de/top/pnml/download/about/
PNML_CTT.pdf

8. H. Störrle. Semantics of Control-Flow in UML 2.0
Activities. In Proceedings of the 2004 IEEE Symposium on
Visual Languages - Human Centric Computing, 2004, pp.
235-242

9. G. Rozenburg, J. Engelfriet, Elementary Net Systems, in:
W.Reisig, G. Rozenberg (Eds.), Lectures on Petri Nets I:
Basic Models - Advances in Petri Nets, volume 1491 of
Lecture Notes in Computer Science, Springer,1998, pp. 12-
121

10. J.L. Peterson. Petri net theory and the modeling of
systems. Prentice Hall, Englewood Cliffs, 1981.

11. Adamski, M.: Direct Implementation of Petri Net
Specification. In:7th International Conference on Control
Systems and Computer Science. (1987) 74–85.
12. R.E. Barlow and F. Proschan. Statistical Theory of
Reliability and Life Testing. Holt, Rinehart and Winston, New
York, 1975.

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf�
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf�
http://www.informatik.huberlin.de/top/pnml/download/about/PNML_CTT.pdf�
http://www.informatik.huberlin.de/top/pnml/download/about/PNML_CTT.pdf�

