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Abstract 

Climate change exacerbates extreme events like floods, droughts, heatwaves, cyclones, hurricanes, 

tornadoes, and wildfires, affecting human populations and environments worldwide. Despite varying 

impacts across regions, no area is immune to climate change consequences. To mitigate these effects, this 

study employs Geographic Information System (GIS), Remote Sensing, and Fuzzy Logic System to map 

flood vulnerability zones in Suleja Local Government, Niger State, North Central Nigeria. The research 

integrates satellite and GIS datasets to prepare Suleja's Flood Zonation Mapping. Rainfall data from Nigeria 

Meteorological Agency (NiMET), Climate Hazards Group InfraRed Precipitation with Station Data 

(CHRPS), Global Satellite Mapping of Precipitation (GSMaP), and parameters like Slope, Elevation, 

Nearness to Water Bodies, Land Use Land Cover, and Drainage Density are utilized to identify flood 

vulnerability. The flood vulnerability map categorizes the area into five zones: Very Low Risk (40.9%), Low 

Risk (18.9%), Medium Risk (27.6%), High Risk (7.1%), and Very High Risk (5.5%). Considering the 

stochastic nature of flood characteristics, this study emphasizes the importance of integrating hydro-climatic 

and physical catchment parameters, leveraging bias-adjusted satellite data to minimize uncertainty. Effective 

flood management requires quantifying risk, susceptibility, and hazard components to establish a robust 

control framework. This research contributes to the development of data-driven flood mitigation strategies in 

vulnerable regions like Suleja. By harnessing GIS, Remote Sensing, and Fuzzy Logic System, policymakers 

and stakeholders can make informed decisions to protect communities and infrastructure from flood risks. 
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Introduction 

Urbanization's rapid pace, driven by population growth and migration, has led to urban sprawl, exacerbating 

flood risks and environmental degradation, notes (Atemoagbo et al. 2023; Nwoke, 2016; Nwoke, 2017). 

This alarming trend is compounded by inadequate environmental protocols, resulting in increased aesthetic 

and non-aesthetic noise pollution. Furthermore, the absence of city-based flood early warning systems, 

structural and environmental planning mechanisms, flood vulnerability profiling, and orchestrated river 

gauging systems worsens the situation. 

In Nigeria, despite efforts by government agencies such as the National Emergency Management Agency 

(NEMA), Federal Ministry of Water Resources (FMWR), and Ministry of Humanitarian and Disaster 

Management, the lack of effective planning and knowledge-based decision-making hampers progress. The 

stochastic nature of flood phenomena underscores the need for data-driven approaches. Remote sensing 

technologies, which consider the fuzzy variables contributing to flood development, are critical in 
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addressing these challenges, as emphasized by (Atemoagbo, et al., 2024; Nwoke et al., 2022). Effective 

flood forecasting systems can significantly enhance public safety, resource management, and flood 

mitigation.  

Effective flood management requires a comprehensive approach, integrating hydro-climatic and physical 

catchment parameters to establish a robust control framework (Antzoulatos et al., 2022). Geographic 

Information System (GIS) and Remote Sensing technologies have been successfully employed to map flood 

vulnerability zones and identify flood-prone areas (Hagos et al., 2022; Tehrany et al., 2019). 

The integration of GIS, Remote Sensing, and Fuzzy Logic System has shown potential in flood risk 

assessment, quantifying risk components and determining flood vulnerability (Hong et al., 2018; Termeh et 

al., 2018). Studies have identified key parameters, including demographic characteristics, socioeconomic 

status, and land use patterns, to determine flood vulnerability (Adger et al., 2005; Birkmann et al., 2013 

Despite existing research on flood risk management, significant knowledge gaps persist. The geographic 

scope of previous studies is often limited, with Suleja Local Government, Niger State, North Central 

Nigeria, being understudied. Methodological constraints, such as reliance on specific datasets and 

parameters, may overlook relevant factors influencing flood vulnerability. Additionally, the lack of long-

term data and insufficient stakeholder engagement hinder accurate flood risk predictions and effective 

mitigation strategies. Furthermore, integrating research findings with existing frameworks and policies, 

addressing uncertainty in bias-adjusted satellite data, and ensuring scalability and transferability to other 

regions remain unexplored. Bridging these gaps is crucial for developing robust, data-driven flood 

mitigation strategies to protect vulnerable communities and infrastructure. 

The aim of this study is to develop a GIS-based characterization of metropolitan flood risk and control in 

Suleja Local Government, Niger State, North Central Nigeria. This research seeks to harness the potential of 

Geographic Information System (GIS), Remote Sensing, and Fuzzy Logic System to mitigate the effects of 

climate change. The primary objectives of this study are to integrate satellite and GIS datasets, rainfall data, 

and physical catchment parameters to prepare Suleja's Flood Zonation Mapping. Additionally, the study 

aims to identify flood vulnerability zones and categorize the area into five flood risk zones: Very Low Risk, 

Low Risk, Medium Risk, High Risk, and Very High Risk. Ultimately, this research aims to contribute to the 

development of data-driven flood mitigation strategies for vulnerable regions like Suleja. By providing 

policymakers and stakeholders with informed decision-making tools, this study seeks to protect 

communities and infrastructure from flood risks, promoting resilient and sustainable urban environments. 

 

2.0 Materials And Methods 

2.1 Study location/Area 

The study area, Suleja, is located in North Central Nigeria, spanning a geographical area of 136.33 km² 

within Latitude 9º10'15" - 9º12′1.17″N and Longitude 7º10′20.25″ - 7º11′40.05″E. With a population of 

216,578 (NPC, 2006), Suleja's geological landscape is characterized by gentle rocks and soils derived 

from sandstone formations. The region's pedological features reveal deep, red soils enriched with clay sub-

soil (Umar et al., 2019; Aminu et al., 2019; Atemoagbo, 2024). Climatologically, Suleja experiences a 

tropical climate, marked by an average annual temperature of 26.3 °C and average annual rainfall of 1405 

mm (Aminu et al., 2013; Atemoagbo, 2024). Understanding Suleja's geographical, geological, and 

climatological characteristics is crucial for assessing its flood vulnerability and developing effective 

mitigation strategies. 

 



Atemoagbo, Oyarekhua Precious, IJECS Volume 13 Issue 03 March, 2024  Page 26103  

 
Figure 3. 1: Map of Nigeria showing Suleja LGA (the study area) 

Source: Atemoagbo et al. (2024) 

 

2.2. Data Collection and Management 

This study utilized various datasets spanning 36 years (1988-2023) to characterize metropolitan flood risk 

in Suleja, Nigeria. Rainfall data were obtained from Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS), Global Satellite Mapping of Precipitation (GSMaP), and Nigerian Meteorological 

Agency (NIMET). Additionally, topographic data were derived from Digital Elevation Model (DEM) 

sources, including discharge, slope, elevation, drainage density, environmental vulnerability, and closeness 

to water body. The research integrated Remote Sensing, GIS, and Fuzzy Logic approaches, involving data 

preprocessing, GIS analysis, fuzzy logic application, data integration, weighted sum overlay technique, 

and analytic hierarchy process (AHP) to assign weights to flood-conditioning factors and quantify their 

relative importance in flood risk assessment, ultimately developing a comprehensive flood risk map. 

This study builds upon previous research in vulnerability assessment and flood risk mapping, leveraging 

Geographic Information Systems (GIS), Remote Sensing, and Fuzzy Logic. Notable precedents include 

Adger et al. (2005), Cutter et al. (2003), and (Foy, 2013), who utilized GIS and Remote Sensing to 

examine climate change vulnerability, develop spatial vulnerability indices, and analyze environmental 

vulnerability. Similarly, Karagiorgos et al. (2016), Birkmann et al. (2013) and Atemoagbo, (2024) 

demonstrated spatial analysis' effectiveness in identifying vulnerable areas. Furthermore, this study's fuzzy 

logic application aligns with (Swain et al., 2020) and (Ouma & Tateishi, 2014), who applied fuzzy logic to 

determine flood vulnerability and integrate it with GIS for flood risk mapping. 

 

2.3 Development of Digital Elevation Models 

The study employed Geographic Information System (GIS) and remote sensing techniques to analyze 

catchment parameters and vulnerability. Digital Elevation Model (DEM) data was obtained from USGS 

Earth (SRTM 30m DEM), while polygon datasets were converted to raster for analysis. ArcGIS software 

and Hydrologic Engineering Center-Hydrological Modeling System (HEC-HMS) were utilized for spatial 

analysis and DEM preprocessing. 

Catchment parameters, including slope, drainage density, elevation, land use/land cover, environmental 

vulnerability, and nearness to water bodies, were mapped using ArcGIS. Spectral classes were defined 

through clustering image data, and pixels were assigned to respective classes. Regions of Interest (ROI) 

were defined to extract statistics for classification. DEM preprocessing and hydrological analysis identified 

streams and basins. 

A suitability model identified vulnerable areas based on criteria such as soil infiltration rates, water table 

depth, and land use. An environmental justice index was integrated into the map to assess equity. A spatial 
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vulnerability index (SVI) and constituent indices (exposure, sensitivity, and adaptive capacity) were 

developed using a spatial index approach. Finally, a vulnerability map was generated for the study location, 

highlighting hotspots and areas of concern. 

The integration of GIS, remote sensing, and spatial analysis for vulnerability assessment has been 

successfully applied by various researchers. For instance, Adger et al. (2005) utilized GIS to examine 

vulnerability to climate change, while Cutter et al. (2003) developed a spatial vulnerability index to assess 

hazards. Similarly, Melody and Johnston (2015) employed remote sensing and GIS to analyze 

environmental vulnerability. Other studies, such as those by (Change, 2023) and Birkmann et al. (2013), 

demonstrated the effectiveness of spatial analysis in identifying vulnerable areas. These studies demonstrate 

the reliability and efficacy of the approach used in this research. 

 

2.3 Flow Characterization and Fuzzy Logic Implementation 

The datasets were characterized using a flow categorization system, comprising five distinct conditions: 

Very Low, Low, Medium, High, and Very High. This categorization enabled the development of a robust 

decision support system. To facilitate high-level decision-making, a Fuzzy Logic System (FLS) was 

employed, leveraging the Fuzzy Inference System (FIS) to represent vague and imprecise knowledge. 

The FLS converted input values into fuzzy terms, which were then evaluated by the fuzzy engine using 

predefined fuzzy rules. This process formed the basis of the decision support system. Output aggregation 

was performed to simplify fuzzy subsets for each output variable. Subsequently, defuzzifiers translated the 

output values into crisp, understandable values for end-users. This integrated approach enabled effective 

decision-making and risk assessment, providing valuable insights for engineering applications. 

This approach aligns with previous research by Swain et al. (2020) and (Yalcin et al., 2011), who 

successfully applied fuzzy logic to determine flood vulnerability and integrate it with GIS for flood risk 

mapping. The study's integrated approach enabled effective decision-making and risk assessment, providing 

valuable insights for engineering applications. 

 

2.4 Selection of membership function and fuzzification of antecedent and precedent variables 

The fuzzy membership rule employed in this study leverages the Gaussian membership function, which 

assigns related members to the same set or group. This approach facilitates the translation of crisp input 

values into linguistic variables. 

The fuzzification process is mathematically represented as: 

A = μ1(Q1)x1 + μ2(Q2)x2 + … + μn(Qn)xn   1 

where Q(xi) represents the kernel of fuzzification, and μi is kept constant while xi is transformed into a 

fuzzy set Q(xi). 

Defuzzification reduces the fuzzy set to a crisp set and converts fuzzy members to crisp members. The 

Gaussian membership method is utilized for defuzzification, expressed as: 

x = Σ [xī(i/n)]   2 

 

This equation enables the calculation of the crisp output value.  
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2.5 Risk Modelling 

This study employed fuzzy logic techniques for risk modelling, leveraging membership functions to 

represent uncertainty in the data. Gaussian membership functions were utilized for fuzzification, enabling 

handling of uncertainty levels: very low, low, medium, high, and very high. A rule-based system was 

developed, integrating expertise and data-driven insights, with triangular and trapezoidal membership 

functions defined for input variables and Gaussian membership functions for output variables. Gaussian 

defuzzification methods converted fuzzy outputs into crisp values for precise risk assessment. Integrated 

with spatial analysis, the fuzzy logic framework considered factors such as slope, drainage density, 

elevation, land use/land cover, and environmental vulnerability. Data preprocessing involved normalizing 

and standardizing input data, with ArcGIS and MATLAB used for spatial analysis, fuzzy logic 

implementation, and data processing. 

 

3.0 Result And Discussion 

3.1 Spatial Variability of Environmental Risk Factors 

The results presented in Table 1 reveal significant spatial variability in environmental risk factors across the 

study area. The slope, drainage density, distance to water, elevation, land cover, and environmental 

vulnerability indices exhibit diverse patterns, influencing the overall risk category. 

 

Table 4. 1: Summary of data form digital elevation model for the catchment area 

Commu Name slope 
Drain Dist to 

Water 
Elevation 

Land 

Cover 

Envirn Risk 

Category Density  Vul 

Kuchiko 

Tuluk 
0.941 0 0.351 0.363 0.375 0.333 low 

Chachania  0.871 0.485 0.975 0.886 0.375 0.801 high 

Guazunu 0.939 0.174 0.937 0.449 0.25 0.666 high 

Bakin Iku 0.875 0 0.921 0.775 0.375 0.674 high 

Maje 0.923 0 0.827 0.289 0.375 0.558 Moderate 

Refinsanyi 0.948 0.122 0.966 0.883 0.5 0.748 high 

Rafin 

Chinnaka 
0.665 0 0.772 0.279 0.375 0.506 Moderate 

Pangamu 0.939 0 0.833 0.42 0.25 0.568 Moderate 

Tunga Gajri 0.801 0.103 0.929 0.273 0.375 0.62 Moderate 

Numewa 0.9 0 0.893 0.528 0.375 0.63 Moderate 

Kwanwashe 0.882 0 0.75 0.693 0.5 0.587 Moderate 

Kuchiko  0.92 0 0.689 0.287 0.375 0.498 low 

Numbwa 

Tukura 
0.904 0 0.636 0.308 0.375 0.466 low 

Paulosa 0.984 0 0.906 0.953 0.5 0.71 high 

Kwamba 0.945 0 0.856 0.471 0.125 0.571 Moderate 

 

 

3.1 Slope and Elevation 

The study area exhibits notable variability in slope and elevation as shown in figure 1a and 1b, critical 

factors influencing environmental risk. Slope values range from 0.665 (Rafin Chinnaka) to 0.984 (Paulosa), 

indicating significant differences in terrain steepness. This variability impacts surface runoff, erosion, and 

landslide susceptibility. The slope values can be categorized into three groups: gentle slopes (0.665-0.8), 

moderate slopes (0.8-0.95), and steep slopes (0.95-0.984). Steeper slopes, such as those found in Paulosa, 

Guazunu, and Refinsanyi, increase the risk of landslides, erosion, and surface runoff. Conversely, gentler 

slopes, like those in Rafin Chinnaka and Tunga Gajri, reduce these risks. The combined effects of slope and 

elevation variability significantly contribute to the environmental risk category. 
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The findings of this study align with previous research highlighting the significance of slope and elevation 

variability in environmental risk assessment (Burroughs, 1986). Specifically, the categorization of slope 

values into gentle, moderate, and steep slopes corroborates (Xiong et al., 2021) and (Fick & Hijmans, 2017) 

work on landslide susceptibility. Similar studies have emphasized terrain factors' role in surface runoff and 

erosion (Boardman et al., 2003), with (Pham et al., 2020) and (Giordan et al., 2020) demonstrating the 

increased risk of landslides and erosion on steeper slopes. This study's focus on the combined effects of 

slope and elevation variability on environmental risk category contributes a unique perspective to the 

existing literature, reinforcing the importance of considering terrain factors in environmental risk 

assessments. 

 

3.2 Drainage Density and Distance to Water 

The study area exhibits significant variability in hydrological characteristics, specifically drainage density 

and distance to water bodies as shown in figure 1a and 1b. These factors play a crucial role in determining 

water flow, accumulation, and flood susceptibility. Drainage density values in the study area range from 0 

(Kuchiko Tuluk, Bakin Iku, Maje, and others) to 0.485 (Chachania), indicating substantial differences in 

water flow and drainage efficiency. This variability significantly impacts flood risk, with areas like 

Chachania experiencing increased water flow velocity, higher runoff potential, and elevated flood risk due to 

their high drainage density values. In contrast, areas with zero drainage density values, such as Kuchiko 

Tuluk and Bakin Iku, exhibit reduced water flow velocity, lower runoff potential, and decreased flood risk. 

This highlights the importance of drainage density in determining flood susceptibility. The distance to water 

bodies is another critical factor, ranging from 0 (Kuchiko Tuluk, Bakin Iku, and others) to 0.975 

(Chachania). Proximity to water bodies increases the risk of flooding due to overflow or storm surges, soil 

saturation and erosion, and waterborne disease transmission. Conversely, areas far from water bodies are 

less susceptible to these risks. 

The findings of this study align with previous research highlighting the significance of drainage density and 

distance to water bodies in determining flood susceptibility (Weiss et al., 2020; Böhm et al., 2015; Khailani 

& Perera, 2013), reinforcing the importance of hydrological characteristics in flood risk assessment. 

 

3.3 Land Cover and Environmental Vulnerability 

The analysis of land cover values reveals a surprisingly narrow range of 0.25-0.5, suggesting relatively 

homogeneous land use patterns across the study area as shown in figure 1d This uniformity implies that the 

region's land use characteristics, such as agricultural practices, urbanization, and forest cover, are fairly 

consistent. However, this homogeneity may mask underlying variations in environmental vulnerability, 

emphasizing the need for a more nuanced assessment. 

Upon closer examination, the environmental vulnerability indices exhibit significant variability, ranging 

from 0.279 to 0.966. This substantial range underscores the diversity of environmental factors at play, 

including soil quality, vegetation cover, topography, and hydrological conditions. For instance, areas with 

high environmental vulnerability indices, such as Guazunu and Refinsanyi, may be more susceptible to soil 

erosion, landslides, and water pollution due to poor soil quality and vegetation cover. In contrast, areas with 

lower environmental vulnerability indices, such as Kuchiko Tuluk and Numbwa Tukura, may exhibit more 

resilient environmental conditions, characterized by better soil quality, denser vegetation, and reduced 

erosion risk. The marked variability in environmental vulnerability indices highlights the importance of site-

specific assessments and targeted interventions to mitigate environmental risks 

The observed variability in environmental vulnerability indices aligns with previous research highlighting 

the significance of site-specific factors such as soil quality, vegetation cover, topography, and hydrological 

conditions in determining environmental vulnerability (Deepak et al., 2020; Gorsevski et al., 2012), 

emphasizing the need for localized assessments and targeted interventions. 

 

3.2 Risk Category 

The risk category classification reveals a stark contrast in vulnerability among the communities studied. 

Notably, seven communities - Chachania, Guazunu, Bakin Iku, Refinsanyi, Paulosa, Kwamba, and Rafin 

Chinnaka - are categorized as high-risk. This classification indicates that these communities are more 

susceptible to environmental hazards, such as flooding, landslides, and soil erosion, due to their 

geographical location, land use patterns, and environmental characteristics. In contrast, five communities - 
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Maje, Pangamu, Tunga Gajri, Numewa, and Kwanwashe - are classified as moderate-risk. These 

communities face some level of environmental vulnerability, but their risk profile is less severe compared to 

the high-risk communities. Factors such as land cover, topography, and drainage patterns may contribute to 

their moderate risk classification. 

 

On the other end of the spectrum, three communities - Kuchiko Tuluk, Numbwa Tukura, and Kuchiko - are 

categorized as low-risk. These communities exhibit relatively resilient environmental conditions, 

characterized by stable terrain, adequate drainage, and minimal land degradation. Their low-risk 

classification suggests that they are better equipped to withstand environmental stresses and hazards. The 

disparate risk classifications among the communities underscore the importance of targeted interventions 

and localized strategies for environmental management and risk mitigation 

a                                                                    b 

 

 
 

(c )                  (d) 
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(e) 

 
Figure 1: (a) Drainage density (b) Distance to Water (c) slope (d) Land Use Land Cover (e) Elevation 

Map 

3.4 Flood risk prediction 

The study area's flood risk distribution is depicted in Figure 2, revealing varied levels of vulnerability. 

Kuchiko Tuluk, Kuchiko, and Numbwa are classified as low-risk areas, characterized by stable terrain and 

minimal flood susceptibility. In contrast, Maje, Chinnaka, Pangamu, Tunga Gajri, Numewa, and Kwanwashe 

are categorized as moderate-risk areas. These areas exhibit some level of flood vulnerability due to factors 

such as land use patterns, drainage density, and topography. Chachania, Guazunu, Bakin Iku, Refinsanyi, 

and Paulosa are identified as high-risk areas, accounting for 7.1% of the total risk. Urban Sprawl, proximity 

to water bodies, high rainfall intensity, and steep slopes contribute to their increased flood vulnerability. 

According to Table 4.5, the risk categorization with percentage contributions for 1986-2022 shows: Very 

Low Risk (40.9%), Low Risk (18.9%), Medium Risk (27.6%), High Risk (7.1%), and Very High Risk 

(5.5%). These predictions inform targeted interventions and flood mitigation strategies. The flood risk 

percentage contribution analysis, presented in Table 2, reveals a significant variation in flood risk across five 

categories: Very Low, Low, Medium, High, and Very High. The results show that 40.9% of the study area 

falls under the Very Low Risk category, indicating minimal flood susceptibility. The Medium Risk category 

accounts for 27.6% of the study area, followed by the Low Risk category at 18.9%. In contrast, the High and 

Very High Risk categories contribute 7.1% and 5.5%, respectively, to the overall flood risk. These areas 

require immediate attention and targeted interventions to mitigate flood risk. The High Risk areas are likely 

characterized by factors such as proximity to water bodies, steep slopes, poor drainage, and high population 

density. Understanding the spatial distribution of flood risk enables policymakers, engineers, and 

stakeholders to develop targeted interventions, prioritize resource allocation, and implement effective flood 

control measures. 

The flood risk categorization and percentage contributions observed in this study align with previous 

research findings on flood risk assessment and spatial distribution (Wang et al., 2018; Di Baldassarre et al., 

2014), highlighting the importance of targeted interventions and flood mitigation strategies. 
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Table 2: Flood risk percentage contribution by the model 

Categorization Percentage Contribution 

Very Low Risk 40.9 

Low Risk 18.9 

Medium 27.6 

High 7.1 

Very High 5.5 

                         

 

Figure 2: Flood Vulnerability map with location 
 

4.0 Conclusion And Recommendation 

4.1  Conclusion 

This study underscores the critical role of integrating Geographic Information System (GIS), Remote 

Sensing, and Fuzzy Logic System in mapping flood vulnerability zones, particularly in regions susceptible 

to climate change impacts. The research focuses on Suleja Local Government, Niger State, North Central 

Nigeria, where flood vulnerability zones were categorized into five risk levels: Very Low Risk (40.9%), Low 

Risk (18.9%), Medium Risk (27.6%), High Risk (7.1%), and Very High Risk (5.5%). 

The findings emphasize the importance of considering hydro-climatic and physical catchment parameters, 

such as Slope, Elevation, Nearness to Water Bodies, Land Use Land Cover, and Drainage Density, in flood 

vulnerability assessments. Leveraging bias-adjusted satellite data from Nigeria Meteorological Agency 

(NiMET), Climate Hazards Group InfraRed Precipitation with Station Data (CHRPS), and Global Satellite 

Mapping of Precipitation (GSMaP) helps minimize uncertainty in flood risk quantification. 

Effective flood management requires a robust control framework established through quantifying risk, 

susceptibility, and hazard components. This research contributes to the development of data-driven flood 

mitigation strategies in vulnerable regions, enabling policymakers and stakeholders to make informed 

decisions protecting communities and infrastructure from flood risks. 

 

4.2 Recommendation  

Based on the findings; the following recommendation is/are made 



Atemoagbo, Oyarekhua Precious, IJECS Volume 13 Issue 03 March, 2024  Page 26110  

a. Integrate Geographic Information System (GIS), Remote Sensing, and Fuzzy Logic System to 

identify flood vulnerability zones. 

b. Utilize hydro-climatic data from reputable sources (e.g., NiMET, CHRPS, GSMaP) and physical 

catchment parameters (Slope, Elevation, Nearness to Water Bodies, Land Use Land Cover, Drainage 

Density) for flood risk assessment. 

c. Develop and implement data-driven flood mitigation strategies in vulnerable regions. 

d. Establish a robust control framework for effective flood management. 

e. Conduct regular updates and refinement of flood vulnerability maps to ensure accurate and informed 

decision-making. 
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