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Abstract 

As the automobile industry moves toward greater efficiency, safety, and autonomous operation, the demand for 

Electronic Control Units (ECUs) - the microprocessors controlling everything from engine functions to 

infotainment systems - has exploded globally. Currently, there are more than 200 million ECUs in the world, 

and that number is expected to rise to 700 million by 2030, necessitating enhanced ECU performance, 

reliability, and safety. However, the growing complexity of ECUs has ironically led to increased false alarms 

and failures, which in some cases have endangered user safety and privacy, causing heavy penalties for 

manufacturers. Although artificial intelligence (AI) and machine learning (ML) are showing promise in 

addressing ECU-related issues, existing methods remain insufficient. Manufacturers need to employ AI-driven, 

end-to-end, standardized solutions that help design, train, test, and deploy models without deep AI expertise and 

allow real-time runtime monitoring and retraining of the ECUs.Drawing on decades of experience in the 

electronics and automotive industries, as well as a track record of successfully deploying AI-based solutions in 

safety-critical systems like avionics and diesel engine control, a comprehensive method is proposed. It includes 

an array of novel functionalities that increase transparency, reliability, and safety while keeping development 

times low. Central to the method is a feature that creates an environment-sensitive digital twin of the ECU by 

assimilating data from ECUs and the vehicle, thus improving model fidelity and monitoring for unforeseen edge 

cases. The proposal is based on co-design and training of AI-based perception and prediction models, which can 

monitor the relevant environmental parameters both on-board and in the cloud. The on-board model is 

lightweight yet deterministic and can trigger warnings in case of model uncertainty and prediction errors, while 

the corrective action is taken by the re-licensed cloud-based model. A dataset of more than 33 million 

kilometers of driving from passenger vehicles in Northern Europe with SaaStronic and Focus models has been 

provided, using compute-efficient methods for interpretation and simplification of AI-based models. 
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1. Introduction 

Amidst the growing complexity in automotive 

systems driven by ongoing electronic innovations 

and the continuous increase in vehicle data volume, 

the Electronic Control Unit (ECU) stands out due to 

several key features, including its high reliability, 

designed structure, and ability to operate within 

specified conditions. The importance of ECU 

reliability is emphasized by year-long expectations 

of correct functioning when vehicles are on the 

road, often subjecting control strategies to a wide 

range of operating situations.On the other hand, 

with recent developments in Artificial Intelligence 

(AI) hardware architectures and the growing need 

for real-time performance due to the increase in 

vehicle computing units, new applications are 

possible to fulfill. For instance, the demand for 

more advanced driver assistance systems (ADAS) 

applications comes from the High-Performance 

Computer (HPC) implementing those systems with 

the "one brain" architecture. Applications including 

neural networks trained with perception data 

(cameras, radars, and lidar) need to be analyzed for 

their impact on ECU reliability. Furthermore, new 

initiatives from manufacturers and the road safety 

community aim to integrate Deep Learning (DL) 

models into safety-critical systems. This leads to a 

growing need for deep awareness of the risks 

related to a possible malfunction of DL systems, 

and the mitigation means to ensure reliability. 

To investigate the possibility of detecting faulty 

events in systems based on fully connected 

Artificial Neural Networks (ANNs), which can 

rationally isolate malfunctioning components 

(weights and biases), a framework to facilitate this 

understanding and to develop anomaly detection 

methodologies is proposed. On the other side, the 

unintentional misuse of Information Technology 

(IT) in automobiles shall also be analyzed. Attacks 

frequently target the cybersecurity aspects as 

software is hackable and sensitive to corruption. 

However, with the increased use of data-based 

knowledge in road safety methods such as 

automotive control and ML/DL applications, the 

detection of data attacks aims to ensure the validity 

of the acquired knowledge. This is especially 

relevant with the upcoming introduction of Ethernet 

for real-time data transmission between components 

and additionally a reduced number of wire 

connections that increase bus vulnerability. As data 

logic can lead to hazards during networking 

operations in the wrong use case, this task intends to 

ensure the integrity of data assets in data-bus-based 

attack approaches. The oncoming use of the 

FLEXRAY bus in this respect is also analyzed. 

 

 
Fig 1 :Principles of cultivating an innovative 

mindset 

 

1.1. Background and Significance 

Innovations in electronic control units (ECUs) have 

become a focal point for researchers and engineers 

seeking to enhance the performance and reliability 

of vehicles equipped with diverse and complex 

computerized systems. Modern cars can hold more 

than 100 ECUs, which control safety-critical 

systems such as electronic stability programs, 

airbag deployments, and advanced brake control 

systems. By 2022, the number of ECUs in vehicles 

has reached an average of 126 units in Europe and 

is expected to increase to 170 by 2030. The growing 

number of ECUs also represents a growing number 

of controllers, sensors, and actuators, which are 

increasingly interconnected, leading to complex 

networked control systems. 

As networked control systems (NCS) are designed 

and built to take advantage of numerous benefits 

like the reduced need for wiring and weight 
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reduction, the number of potential threats is large 

and growing. For instance, complex ECUs take 

hours to develop their software, and sensors and 

communication links within the NCS development 

and design phases can either be faulty or behave 

unpredictably. Furthermore, as controller hardware 

in a loop (CHIL) systems are deployed, the artificial 

nature of the system can reveal other weaknesses, 

such as environmental sensitivity and cybersecurity. 

Cyber threats increasingly threaten control loops, as 

large amounts of data are sent over communication 

links. The availability of sophisticated tools for 

modeling, monitoring, and control enables parties 

with specific interests to manipulate the data flow in 

the NCS. If so, cyber threats may exploit the data 

links and gain potential control over the overall 

system, affecting safety-critical ECUs.Current 

legislation continues to increase vehicle regulation 

and safety standards. Consequently, the 

development of on-board electronic systems for 

vehicles has become time-consuming and costly. As 

autonomous driving continues to emerge, vehicles 

need to become safer and more reliable. Modern 

vehicles hold safety-critical computer-based 

systems that have a great deal of influence over the 

safety of the companions. A computationally 

enhanced unreliable ECU may lead to catastrophic 

events, causing fatalities and injuries. Consequently, 

there is a growing need for reliability in ECUs. 

Methods to promote reliability are desired to be 

embedded within the standard development 

lifecycle of software systems to be efficient. 

 

1.2. Research Aim and Objectives 

Electronic control units (ECUs), the "brains" of 

today’s automobiles, receive inputs from various 

sensors, adjust the settings of associated actuators, 

as well as exchange information with other ECUs 

via internal communication buses. The increasing 

complexity of autos is the driving force behind the 

rapid growth in the number of ECUs and vehicle 

communication networks. However, despite the 

advantages offered by the use of multiple ECUs and 

the twin technologies of distributed computing and 

control, there exist significant drawbacks to these 

approaches. There are limits to the safety and 

reliability that can be attained by plural redundant 

ECUs, while a continued increase in the number of 

ECUs and data exchange transfers can lead to the 

saturation of communication buses. On the other 

hand, the success of global methods depends on the 

prior knowledge and the precise mathematical 

modeling of complex engine control units. 

Metamodeling methods possess the flexibility 

needed to model complex engine processes, which 

involve a large number of non-linear and always-

changing partial differential equations with time-

varying parameters. Artificial Intelligence is useful 

in modeling, validating, and estimating the effects 

of ignition, and can even be superior to explicit 

models in ferromagnetic hysteresis. 

The overall aim of this research is to develop new 

techniques and applicable routines that will enable 

the use of advanced artificial intelligence methods 

for the optimization and control of complex Engine 

Control Units in the automotive industry. More 

specifically, the objectives of the proposed research 

are: to analyze why the traditional approaches of 

minimum or maximum control have proved to be 

incapable of handling the optimization and control 

of complex Engine Control Units; to identify the 

characteristics of optimal or near-optimal behavior 

and control in generic systems modeling like 

physical, biological, as well as man-made; to 

determine the most appropriate Artificial 

Intelligence methodology and technology for on-

line adaptive modeling, optimization, and control of 

complex Engine Control Units; to develop new 

methods and applicable routines using advanced 

Artificial Intelligence techniques; and to 

demonstrate the viability and capabilities of the new 

approaches on a catalytic converter application of 

Toyota's Engine Control Unit. 

 

2. Electronic Control Units (ECUs): Overview 

and Evolution 

Electronic Control Units (ECUs) are key 

components in automotive and various industries 
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that serve as the brain of a vehicle. They are 

designed to control various systems in a vehicle and 

ensure that these systems operate efficiently, 

reliably, and safely. With the rise of electric and 

autonomous vehicles, ECUs are gaining increasing 

importance, and their functionality is also rapidly 

evolving. 

The increasing vehicle complexity, advancement of 

connected and automated driving, vehicle 

electrification, and the rise of new mobility 

concepts enable tremendous opportunities along 

with huge challenges for automotive manufacturers. 

Vehicles in the future will be controlled by a 

considerably larger number of Electronic Control 

Units (ECUs) that ensure safety, comfort, 

efficiency, connectivity, and real-time 

communication with other components and 

vehicles. They may also be equipped with more 

intelligent, highly sensitive, and accurate sensor 

systems mounted either on the vehicle or its 

environment. Such changes will make vehicles over 

one hundred times more complex than present 

vehicle generations. The most sophisticated vehicle 

functions will rely on numerous ECUs processing 

and communicating huge amounts of sensor data in 

real time; hence, the automotive electrical/electronic 

(E/E) architecture will be fundamentally redesigned. 

More and more vehicle functions require sensors 

and controllers for safety, comfort, and system 

enhancements, which leads to a steadily growing 

number of ECUs in vehicles. Additionally, safety 

and reliability requirements for these ECUs increase 

in parallel due to growing interdependencies of the 

system and safety-oriented functions on vehicle 

dynamics, such as the integration of braking and 

steering systems. The ongoing trend of mechatronic 

development is to control multiple functions with 

one common ECU. The evolution of ECUs in the 

automotive industry has tended towards centralized 

architectures with powerful computer units 

controlling various subsystems within the vehicle. 

This trend is faced with a dilemma: Emerging 

vehicle safety-related functions require systems on 

chip with high computational performance but at 

the same time high reliability, while recent technical 

developments allow for such computational units 

but have severe implications on system safety.The 

automotive industry is witnessing a significant 

transformation in Electronic Control Units (ECUs), 

driven by the complexities of modern vehicles and 

the advent of electric and autonomous technologies. 

As vehicles become more advanced, the number of 

ECUs is expected to increase dramatically, with 

future vehicles potentially containing hundreds of 

these units. This surge in ECUs is a response to the 

need for enhanced safety, comfort, efficiency, and 

connectivity, driven by sophisticated sensor systems 

and real-time data processing requirements. 

However, this evolution presents a complex 

challenge: while centralized architectures with high-

performance computing units promise to streamline 

vehicle control by managing multiple subsystems, 

they also raise critical concerns about system safety 

and reliability. The integration of safety-critical 

functions, such as braking and steering, demands 

not only robust computational capabilities but also 

exceptional reliability, leading to a delicate balance 

between performance and safety. As the automotive 

sector continues to push the boundaries of 

mechatronic development, addressing these 

challenges will be crucial in shaping the future of 

vehicle E/E architectures. 

 

 
Fig 2 : Electronic Control Unit (ECU) 

 

2.1. Definition and Functionality 

Electronic Control Units (ECUs), the backbone of 

modern automobiles, comprise embedded systems 

designed to perform specific control functions. 
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These computerized devices play a pivotal role in 

various automotive systems, including engine 

control, transmission control, and driver assistance 

systems. The widespread adoption of ECUs in cars 

can be attributed to their ability to ensure efficient 

vehicle operation and enhance safety. Initially, 

single-function ECUs powered by 8-bit 

microcontrollers operated basic components such as 

Electronic Throttle Control (ETC) systems and 

Anti-lock Braking Systems (ABS). However, with 

the increasing demand for safety and comfort 

features, the automotive industry saw a surge in the 

number of ECUs, leading to the advent of multi-

functional ECUs to optimize space and costs. 

To meet the growing complexity of vehicle systems 

and ensure reliable operation amidst changing 

operating conditions, the development of more 

powerful microcontrollers became essential. 

Various functional blocks, subsystems, and 

peripherals were integrated into a single chip, 

giving birth to System on Chips (SoCs). The 

integration of ECUs reduced the number of external 

components, minimized communication latency, 

and enhanced the reliability of the design. Over the 

years, the automotive industry has witnessed 

continuous development and enhancement of ECUs 

to ensure the performance and safety of various 

automotive systems.The components of an ECU 

include Input/Output (I/O) interfaces, a central 

processing unit (CPU), memory, communication 

bus, power supply, and case. The software 

architecture of an ECU comprises the operating 

system and application software running on it. 

Input/output interfaces encompass sensors that 

collect information, such as temperature, speed, 

position, etc., affecting the control process. This 

information subsequently influences the 

corresponding actuators, such as valves and 

solenoids. With the increase in the number and 

complexity of ECUs in vehicles, protocols like 

CAN, LIN, and FlexRay have been developed to 

enable communication between different ECUs. A 

complex application, such as riding stability control, 

can be partitioned into several portions running on 

different ECUs. Furthermore, components like 

Integrated Circuit (IC) packaging technology have 

been developed to support high performance, 

reliability, and cost. The case protects sensitive 

parts from moisture, shocks, vibrations, dirt, and 

other harmful factors. ECUs play a crucial role in 

jungled space vehicle networks where mechanical 

deformations and temperature variations are severe. 

           

2.2.Evolution of ECUs in the Automotive 

Industry 

Originally designed to support their functions, 

control units were standalone devices with 

dedicated inputs and outputs. Each control unit 

controlled a dedicated vehicle function, such as the 

engine, transmission, brakes, or on-board network. 

With the growth of vehicle functions to be 

controlled, this one-function-one ECU concept led 

to the rise in the number of control units in a 

vehicle, which resulted in an overall overhead of 

multiple devices on the vehicle's architecture. These 

ECUs grew rapidly in complexity, combining a 

sizable computational capability with advanced 

software, becoming the most sophisticated devices 

of a vehicle, outnumbering in several aspects classic 

automotive devices, such as hydraulic systems, 

sensors, and actuators. The automotive industry was 

challenged to migrate these control units out of a 

broken paradigm assuming the hybrid cohabitation 

of electrical, electronic, and mechanical 

technologies and heavily depending on the 

mechanical dynamics of the chassis for a substantial 

proportion of driving tasks. This general context 

gave rise to the need for an evolution toward new 

types of electronic control units that would suit the 

most demanding use cases of autonomous 

driving.The evolution of automobiles is occurring in 

three complementary ways: an increase in vehicle 

functionality and served vehicle applications per 

vehicle; an increase in driving automation levels; 

and a shift from the conventional realm of driving 

up to partially and fully autonomous driving. ECUs 

ideally were envisioned in a multi-purpose design 

encompassing several vehicle functions and 
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applications together with several processing cores 

integrated on a common chip. It was foreseen that 

early generations of such ECUs would support the 

vehicle's applications in safety-related and critical 

control late in the autonomous driving evolution 

path. A newer conception of ECUs, anticipated to 

be fully functional in the vehicle architecture, 

became multi-purpose units that controlled several 

safety-inherent vehicle functions and were also 

expected to support future vehicle applications in 

the domain of assisted and highly automated 

driving. Newer generations of ECUs were deemed 

inevitable, complementary to conventional ECUs, 

for pedestrian safety applications and low-speed 

driving tasks. As highly sophisticated and complex 

multi-sensor ECUs, these control units significantly 

differed from any legacy control unit, embodying a 

paradigm shift in the automotive industry. 

 

3. Integration of Artificial Intelligence (AI) in 

ECUs 

 

Integration of Artificial Intelligence (AI) in ECUs 

Overview of AI in Automotive Systems 

The automotive industry is undergoing a paradigm 

shift in vehicle architecture. The conventional 

paradigm embeds functionalities in several 

individual hardware distributed units, wiring nodes 

connected to a bus. Since ECUs are still hardware, 

they have limitations on cost, weight, and 

processing capabilities. Therefore, to cope with 

increasing functional complexity, higher computing 

power needs to be fitted into the existing 

architecture. The goal is to satisfy the pile-up of 

applications and safety constraints at affordable 

costs. Alternatively, centralizing processing in a 

single unit significantly reduces the overall system 

complexity and increases performance and 

reliability. However, complex algorithms cannot be 

run on the existing central units because of their 

limitations in terms of safety and performance. 

ECUs automating complex tasks are taking safety-

critical decisions that require high reliability. 

ECUs play a key role in modern automotive 

systems, supporting advanced functionalities like 

assisted driving. With increasing complexity and 

demand for new features, middleware-based 

decoupling and a combination of model-based 

design and reuse architectures and application 

programming interfaces (APIs) can make it feasible 

to develop reshaping systems with future-proof 

safety architectures and high reuse capabilities. On 

the other hand, there is a growing interest in 

innovative engineering solutions, which combine 

novel computing architectures so that over-the-air 

updates are enabled.Integrating AI in ECUs 

transforms the ecosystem towards a new level of 

performance and enables smarter automated 

vehicles and mobility concepts responsive to 

stringent requirements on user comfort, safety, and 

sustainability. AI can enable enhanced perception 

and situational awareness with novel sensing 

concepts. Lateral control will go beyond the vehicle 

path following motion and will develop new 

intelligent integrated concepts that consider the 

broader context. Longitudinal and lateral control 

tasks will evolve jointly with new concepts. 

Exploiting the full potential of AI in vehicles 

involves developing novel approaches, concepts, 

and technologies to ensure that AI is safe, robust, 

reliable, explainable, transparent, and energy-

efficient. 

Benefits and Challenges of AI Integration in ECUs 

To understand current trends and challenges with 

AI usage in automotive ECUs and actively shape 

tomorrow's technology, an automotive mindset is 

imperative. Essential investigative parameters are 

emerging new applications, the required accuracy of 

AI-based solutions, whether solutions for assistance 

or automation are intended, and the range of 

investigation. Model-based approaches might be 

pursued with processed sensor data or with raw 

sensor data. The acceptance of data-driven solutions 

greater than Level 2 automation might be difficult 

due to safety norms and liability reasons confined 

by complex transfer functions for MIMO 

systems.Safety becomes a growing issue with the 
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increased usage of AI-based solutions in ECUs 

because traditional safety concepts do not apply to 

AI. Reliability is paramount for the acceptance of 

AI-based solutions in ECUs and concerns on bias 

and discrimination are growing with increased 

reliance on AI inside ECUs. Clarity and explanation 

of AI's actions and decisions are fundamental for 

trustworthiness from a human acceptance 

perspective and must be addressed for the usage of 

AI inside ECUs. AI-based solutions usually require 

enormous training efforts depending on the 

complexity of the design space that must be 

explored and from huge amounts of training data 

the majority of which must be evaluated with 

processing resources. 

 

3.1. Overview of AI in Automotive Systems 

Artificial intelligence (AI), and its subset machine 

learning (ML), have begun to permeate everyday 

life. Up until now, AI has primarily made inroads in 

the consumer market. Voice recognition 

systems/devices like Amazon's Alexa and Google's 

smart speakers, video recommendation systems on 

platforms like YouTube, Netflix, and Hulu, 

graphical recognition systems on social media like 

Facebook and Instagram, and real-time translation 

devices like Apple's Siri have gained popularity. 

Other high technology-focused areas like the 

automotive sector are cognizant of the potential of 

AI, and major companies have invested in AI 

research and development. 

The automotive sector has huge amounts of data 

that have been collected over decades through 

research and development jobs, mileage tests, 

production processes, warranty claims, and 

connected vehicles. Data-driven technologies have 

been leveraging these data through digital twin or 

metaverse concepts, including AI, ML, data 

analytics, and the Internet of Things (IoT), to 

enhance the productivity, performance, and 

reliability of both design, validation, manufacturing, 

and post-manufacturing processes.The expansion of 

AI/ML/IoT/big-data/data-hub 

technologies/infrastructure is dominating the 

broader economic sectors, but it permeated 

Economics-1 (Economics of Algorithm and Data) 

only a decade ago. However, the automotive sector 

has huge implications for this Economics 

(Economics-2), where automobiles, trucks, and 

SUVs would generate huge amounts of data. 

Moreover, many of the advanced operations of 

vehicles would be conducted automatically through 

sensors and controllers, which in turn would send 

huge amounts of data to the data hub (cloud/edge 

network).Thus, the aim of an AI/ML/electronic 

control unit (ECU) is to enhance either the design & 

development, validation, manufacturing, or after-

manufacturing processes. ECUs are hardware 

components that can process data, previously 

designed to sense and control mechanisms 

(actuators, motors) through data communication 

with other ECUs and units (sensors). Later, the 

fuzzy-logic, neural-networks-based AI was 

implemented, which analyzed past data for 

decision-making, controlling mechanisms, etc. In 

the recent past, deep learning (DL) based AI, and its 

algorithms with huge data requirements are being 

implemented. 

 
 

            Fig 3 : AI in the Automotive Industry 

 

3.2. Benefits and Challenges of AI Integration in 

ECUs 

Embedding artificial intelligence (AI) components 

into electronic control units (ECUs) is making 

automotive systems more intelligent, responsive, 

and proactive to driver behavior. The complexity of 

evaluating different aspects of road conditions, 

drivers, accidents, and miscellaneous environmental 

issues including weather—while controlling vehicle 

functions such as steering, acceleration, and 
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braking—calls for innovative ways to handle these 

challenges. These challenges can be implemented 

using AI components for ECUs, in addition to the 

traditionally followed rule-based expert systems 

(RES). Various AI approaches are being actively 

researched for use in driving assistance systems and 

with applications in the automotive domain. The 

main aim of these AI approaches is to augment the 

intelligence of the driving assistance system so that 

the vehicle is planted more securely on the road 

with improved performance and at the same time 

ensuring enhanced safety for the driver and his 

fellow passengers.Due to their proven performance, 

implementation feasibility, and robustness, 

techniques based on artificial neural networks 

(ANN) and fuzzy logic (FL) have become widely 

popular and are actively researched methods of AI, 

especially for applications in the automotive 

domain. Descriptions of these two AI approaches 

are provided, both as individual entities and in 

hybrid combinations. These hybrid combinations 

are seen to have the advantages of reducing 

computational costs and improving efficiencies over 

the conventional approach of using ANNs or FL 

individually. Research issues that must be addressed 

to broaden the area of application of this approach 

are also discussed.The integration of artificial 

intelligence (AI) techniques into traditional 

vehicular architectures, such as electronic control 

units (ECUs), enables next-generation advanced 

driver assistance systems (ADASs). These onboard 

AI techniques allow ECUs to sense, interpret, and 

react proactively to diverse driving situations and 

conditions. Developing such intelligence systems 

significantly augments vehicle safety, improves 

road traffic control, and enhances the vehicle 

driving experience. In addition, such intelligence 

systems may lead to the popularization of a new 

type of vehicle: autonomously propelled vehicles, 

which drive without any intervention from a human. 

 

4. Innovative Applications of AI in ECUs 

As electronic control units (ECUs) proliferate in 

vehicles, so do their related issues, including more 

frequent and severe failures. One promising 

approach to addressing these problems is the use of 

artificial intelligence (AI) for innovation, which can 

create value for the companies that adopt it and 

reduce their vehicle failures. Several applications of 

AI can enhance the performance of ECUs, thereby 

increasing their reliability. However, there is a need 

to review the recent innovative applications of AI in 

ECUs. 

Many researchers have been examining how to 

enhance the performance of ECUs through various 

innovative applications of AI. As a result, a lot of 

AI applications have been developed in recent 

years. However, there are still some novel areas 

where the use of AI applications can enhance 

performance that have not been studied by others. 

AI can be applied to ECUs in both hardware and 

software aspects. First, considering the hardware 

aspect, the application of AI in ECUs regarding 

fault detection within the safety-critical areas. 

Second, considering the software aspect, several 

novel applications of AI in subdomains such as fault 

tolerance, predictive maintenance, and secure 

communication of ECUs have been discussed. 

Various faults arise in ECUs due to the complexity 

of ECUs associated with advanced vehicle 

applications, the use of cheaper components, 

increased temperature, and increased chance of 

electromagnetic interference. As the number of 

ECUs in vehicles increases, the cost incurred for 

repairing faulty ECUs increases. So, several 

methods have been developed to detect faults in 

ECUs. Many of them are based on historical data, 

and this may not be enough to detect faults. New 

methods for detecting faults have been developed 

and are based on new knowledge. These innovative 

applications of cutting-edge AI techniques 

concerning the safety-critical areas of vehicles 

enhance fault detection and performance 

improvement. ECUs play an important role in 

autonomous driving systems for vehicles, and they 

are responsible for strengthening the computing and 

communication capabilities of vehicles. 
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Roads are becoming increasingly congested and 

dangerous. Thus, new solutions are needed to 

relieve traffic and improve security. Self-driving 

vehicles are evolving technologies that may provide 

new solutions to such problems. Several prominent 

companies have been investing in self-driving 

vehicles and their solutions. In autonomous driving 

systems, many cutting-edge AI techniques have 

been developed to detect surrounding objects 

accurately. Often a combination of several 

approaches is used to achieve the highest perception 

of quality, especially in complex environments. AI 

techniques such as deep learning and neural 

networks have attracted extensive attention. These 

intelligent techniques enhance perception 

performance while reducing computing resources 

dramatically. ECUs play vital roles in interpreting 

the data from various sensors, communicating with 

other ECUs, controlling the actuation, and ensuring 

the safety of the overall systems in autonomous 

vehicles. 

 

 4.1. AI for Predictive Maintenance 

Artificial intelligence (AI) has become an 

indispensable tool for unlocking the full potential of 

Industry 4.0. With its promise to ensure reliable 

performance, increased revenue, and reduced costs, 

AI systems are becoming commonplace across 

numerous industries. In particular, AI-based 

predictive maintenance solutions have gained 

traction as a means of maximizing the potential of 

Condition Monitoring (CM) systems implemented 

in plants by addressing their main limitations, such 

as noise sensitivity, reliance on expert knowledge, 

and the need for plant shutdowns before predictive 

maintenance actions. The advancements of smart 

sensors in electronic control units (ECUs) are a step 

towards improved device reliability. 

The ongoing CityPeg Project aims to widen the 

utilization of AI-based predictive maintenance 

solutions for ECUs. A proposal for an all-in-one 

predictive maintenance solution is presented, which 

includes regression-based remaining useful life 

predictions, fault classification, and clustering 

approaches to support knowledge augmentation 

with the main objective of improved reliability of 

the ECUs considered in electric drives for rail 

traction. A first step towards such a solution is made 

by implementing remaining useful life (RUL) 

predictions applied to an imperfectly mounted strain 

gauge sensor in ECUs using Auto-Encoders and 

Long Short-Term Memory Neural Networks. A 

proposal for the integration of the predictions within 

ECU applications for decision-making is presented 

and demonstrates the growing ability of AI-based 

solutions beyond the domain of data scientists.An 

exploratory analysis of CM data is performed to 

illustrate how clustering can support the 

augmentation of operational knowledge. The 

intelligent use of condition monitoring (CM) data 

from ECUs resulting from new vehicle generations 

equipped with smart sensors offers an opportunity 

for improved reliability predictions. Three research 

topics are tackled to cover the main challenges of 

utilizing AI approaches with a focus on exploring 

opportunities regarding reliability improvements of 

ECUs. The topics cover non-expert-friendly AI-

based monitoring methods to support low-cost 

implementation of CM systems by vehicle 

manufacturers, real-time interpretable model 

implementations for ECU applications, and 

opportunities for predicting design faults or 

weaknesses based on CM data from ECUs of 

multiple vehicle generations. 

 
Fig 4 : AI in predictive maintenance 

 

4.2.AI for Autonomous Driving Systems 
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In the pursuit of developing fully autonomous 

vehicles, OEMs and system integrators are 

deploying advanced features for high-level 

automation. Several of these features rely on 

machine learning-based perception algorithms, 

which rely on sensor data and are executed in high-

performance electronic control units (ECUs). As a 

result, a new class of vehicles is emerging: smart 

vehicles with a high-capacity data backbone, cloud 

connectivity, and a growing number of networked 

systems of sensors and ECUs. This trend introduces 

new possibilities and challenges in terms of 

performance, cost, and cybersecurity risk for 

automotive embedded networks. Enhancing and 

possibly hardening the deployment and execution of 

data-intensive, machine-learning-based applications 

in a smart vehicle's electronic architecture is 

critical. 

Machine learning (ML) techniques, especially deep 

learning (DL), have gained considerable traction in 

recent years and are becoming the dominant 

approach for processing sensory data in situations 

where the availability of physical models is highly 

limited. However, automotive ECUs traditionally 

rely on programmable logic arrays (PLAs) for the 

deployment of safety-oriented, deterministic, and 

hard real-time SP applications. Unfortunately, 

automotive-grade silicon architectures do not 

support the effective deployment of ML-based 

algorithms due to a significant mismatch between 

the desired and provided computational capabilities. 

In this context, the challenge of driving the 

evolution of smart vehicle architectures is examined 

by addressing all relevant aspects of the application, 

data routing, and ECU hardware level, and outlining 

a small vehicle sensory and ECU configuration. 

State-of-the-art automotive-grade ECUs are asked 

to deploy data-intensive, classifier-based, machine-

learning-driven, intelligent driving applications. A 

methodology is proposed to explore the 

architectural requirements and bounds on the 

performance of the application and the 

viability/sustainability of the vehicle sensory/ECU 

topology. The performance of sample ML-based 

ECUs is analyzed and categorized into the 

following: dominantly off-vehicle driven; additive 

latency; complex topology; disruptive; and 

unacceptable risk. Finally, there are noteworthy 

implications at the application, network, and ECU 

hardware level that drive the evolution of the smart 

vehicle electronic architecture. 

 

5. Case Studies and Examples 

Electronic Control Units (ECUs), the intelligence 

behind automotive systems, have evolved from 

simple mechanical controllers into complex digital 

microcontroller-based devices. With the growing 

desire for safety, comfort, and autonomous 

capability, automotive manufacturers have started to 

implement more advanced and computationally 

demanding applications, relying on ECUs and 

onboard system connectivity. However, the 

increasing number of ECUs can lead to unwanted 

complexity and undesired electronic system 

behavior, hence the design challenge is fueled by 

the competing requirements of increasing 

capabilities, declining costs, and the assurance of 

the ECUs' safety and robustness. This is especially 

relevant for systems involving an increasing number 

of safety-critical and real-time applications, such as 

Advanced Driver Assistance Systems (ADAS) and 

automated driving.Artificial Intelligence (AI) refers 

to either the imitation of human methods of thought, 

behavior, and learning or the development of 

methods that simulate human capabilities on a 

machine. In the automotive domain, the fields of AI 

of interest concern either the simulation of human 

perception, cognition, or driving actions—typically 

on very complex on-board simulation systems—or 

the attempt to imitate human capabilities in the 

development of the control laws to govern safety-

critical functions by control laws typically on-board 

on the vehicle (e.g., automated speed adaptation, 

lane keep assist).The deployment of onboard AI in 

vehicles is currently enabled by the introduction of 

new powerful Auxiliary Processing Units (APUs) 

(e.g., NVIDIA Orin and Pegasus), enabling the 

execution of complex AI functionality on a low 
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latency basis. However, complying with automotive 

safety standards—such as the umbrella standard 

ISO26262—is still an open challenge for deploying 

AI methodologies on board. The main challenge is 

the establishment of a systematic approach for the 

rigorous safety assessment of these methods. 

On-board AI has been successfully deployed in 

non-safety-critical applications such as enhanced 

user experience (e.g., fraud detection, CCTV audio 

detection) or vehicle optimization (e.g., traffic 

outlier detection, predictive navigation). Safety-

relevant applications have also been presented, but 

they are using off-board AI methods, which 

typically imply a less stringent safety approach 

(e.g., retraining the model based on driving data 

collected offline), consider reduced geographical 

and temporal horizons (i.e., evaluated on a reduced 

number of miles post-deployment), or assume less 

catastrophic consequences of a wrong decision 

(e.g., at most a safety of life detrimental 

consequence). 

 

 
Fig 5 :  AI in automotive: cases, technologies 

 

5.1.Real-world Implementations of AI in ECUs 

The merging of artificial intelligence (AI) with 

advanced automotive Electric Control Units (ECUs) 

is one of the pioneering trajectories of automotive 

architecture. There is a rising trend to deploy 

advanced AI models, such as deep learning 

techniques, that facilitate the extraction of 

information from unlabelled data. This allows for 

the identification of complex and non-linear 

relationships in sensor data, which may lead to 

performance and reliability enhancement. 

Conversely, those approaches lack the traditional 

signal processing model interpretability. As a result, 

explanatory capabilities for its decisions are often 

missing. In this domain, the reader will learn about 

two real-world examples of AI-based applications 

in automotive ECUs following different 

methodologies for data post-processing/model 

extrapolation. 

AI in Engine Management Systems: Closing the 

Loop 

The development of a signal model-based residual 

generator that determines the health indicators of an 

automotive air-fuel ratio (AFR) sensor is presented. 

This component is used in the on-board diagnosis of 

automotive engine management systems. The 

functionality is validated in a hardware-in-the-loop 

(HIL) setup for a turbocharged diesel engine. The 

ongoing operation point of the engine is subjected 

to real-world variations, such as load transients, 

road load disturbances, and noise from the 

actuators. Nevertheless, the closed-loop regulation 

of ECU-controlled manipulated variables is ensured 

with an output feedback controller. In these 

scenarios, the performance of a state-of-the-art 

machine learning-based residual generator is 

compared to the signal model-based approach to 

check the explainability and robustness of both 

methods against driver-induced events. Preliminary 

results show that the signal model-based solution 

can determine a meaningful health indicator of the 

AFR sensor under closing-the-loop conditions, 

while the signal-free approach collapses during 

transients.AI in Automotive Data Assessment: 

Fitting the Data-Driven-Machine Learning Model 

A data-driven methodology using AI-based 

techniques to evaluate and classify real-world trips 

collected on vehicles is proposed. The novel 

approach deploys data clustering algorithms applied 

to the variables available in the analysis at different 

maturity levels of data post-processing. Further 

assessment of the clusters is performed by applying 

self-organizing maps (SOMs) that facilitate the 

identification of the most relevant data and the 

indication of reasons behind misbehavior or 

undesired effects of the ECUs. Robustness and 
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detailed insight into the assessment results are 

guaranteed with a predefined workflow that 

includes several automatics and supervisory 

analyses. Moreover, the developed strategies for the 

automatic analysis of the data allow for on-demand 

assessments of large batches of trips. The 

combination of the developed classification 

algorithms with outlier detection strategies 

alleviates the burden of dedicated online personnel. 

The application of AI-based data clustering 

techniques on raw data acquired from the vehicle 

was successful and revealed meaningful 

information about the trips or driving patterns under 

consideration. That approach can be used in data 

analysis for various purposes, such as specifying 

requirements for model validation extensively or 

PCA for data characterization with a mathematical 

basis. In the latter case, the identification of the 

most relevant variables for the analysis arises as a 

byproduct. 

 

6. Conclusion 

The increasing complexity and capabilities of 

automotive applications and the growing demand 

for electric vehicles (EVs) offer new avenues for 

innovation. In this context, artificial intelligence 

(AI) has gained prominence as an enabler for 

innovative functions and applications. Broadly, AI 

comprises several methods that combine data 

knowledge with real-time computation. Its 

architecture typically includes multiple sensors for 

"perception," control algorithms and actuators for 

"decision," and feedback loops for "learned 

improvement." Crucially, reliable data—preferably 

high-quality and diverse, consistent in time and 

space, and preferably linked to physical models—is 

key to successful AI integration. 

Automotive control includes various domains, with 

electronics playing a pivotal role, spearheaded by 

Engine Control Units (ECUs). Vehicle ECUs are 

typically distributed across the vehicle, comprising 

millions of lines of software and dense physical 

wiring. Conventional development, verification, and 

qualification efforts focused on hardware, software, 

and reliability have proven effective for existing 

functions but are less suited to upcoming safety-

critical functions leveraging AI. Notably, this refers 

to the combination of even slightly modified 

functions and deployment in safety-critical 

domains, such as autonomous driving or automotive 

power management. AI-type ECUs would filter 

sensor data such as camera and lidar but would need 

to be highly reliable, deterministic, and responsive, 

posing engineering design challenges similar to 

those faced by existing safety-critical functions.In 

the coming years, it is expected that automotive 

electronics will assure freedom from interference in 

safety-critical domains to ensure performance and 

reliability. Innovation potential is enormous, with 

opportunities encompassing the entire design stack, 

from sensors to algorithms and hardware. High-

quality data sets derived from physical models, 

filters, and multiple sensor types would provide the 

groundwork for AI-based functions. In terms of 

algorithms, on-vehicle complementarity of AI and 

engineering models, explainable AI, and rigorous 

assurance methods can be envisioned, with 

applicable algorithms hitherto largely unexplored. 

Remarkably, using novel hardware approaches such 

as new architectures, high-performance 

components, and new processing designs, hopes are 

harbored for extensive changes in functionality and 

performance beyond mere AI integration.The 

increasing complexity of automotive applications 

and the surge in demand for electric vehicles (EVs) 

are driving significant innovation, with artificial 

intelligence (AI) emerging as a key enabler of 

advanced functionalities. AI integrates various 

methods to enhance vehicle performance, involving 

multiple sensors for perception, control algorithms 

for decision-making, and feedback loops for 

continuous improvement. The successful integration 

of AI hinges on the availability of reliable, high-

quality, and diverse data that is consistent over time 

and space, ideally linked to physical models. As 

automotive control evolves, traditional Engine 

Control Units (ECUs) are being challenged by new 

safety-critical functions that leverage AI, such as 



Aravind Ravi, IJECS Volume 13 Issue 01 January, 2024  Page 26045 

autonomous driving and advanced power 

management. These AI-driven ECUs must filter 

complex sensor data like camera and lidar inputs 

while maintaining high reliability and 

responsiveness. This shift necessitates a 

transformation in the development and assurance 

processes, extending beyond conventional hardware 

and software approaches. Future innovations will 

likely span the entire design stack, from sensors and 

algorithms to novel hardware architectures, with a 

focus on integrating AI with engineering models, 

developing explainable AI, and exploring new 

processing designs to enhance vehicle functionality 

and performance. 

 

6.1.  Future Trends  

Innovation and advancement in Electronic Control 

Unit (ECU) technology have progressed hand-in-

hand with the development of vehicles for over four 

decades. This has taken place alongside the growth 

in electrical/electronics architecture, driveline 

complexity, functional requirements, and quality 

expectations. In this constantly changing landscape 

of vehicle electronics and all of its components, the 

ECU is very much central to the entire construction 

of a vehicle. For almost all vehicle functions, the 

ECU either contains or supports an associated 

hardware or software component. In recent years, 

the arrival of new vehicle technologies and 

requirements has posed multiple challenges for 

ECU vendors and manufacturers, who must 

continuously adapt and respond. Such complexity 

has implications across the entire production chain, 

from design to manufacturing and testing to supply 

chain and after-market. Innovations in the design 

and production phase (e.g., system integration, 

hardware/software co-design, EDA/CAM tools) as 

well as in the after-market (e.g., maintenance, 

diagnostics, repair) have been and still are required 

to improve competitiveness and ensure achievement 

of state-of-the-art products. A recent trend in this 

context is the use of Artificial Intelligence (AI) in 

various ECU-related activities, such as software 

generation, architecture design, pattern recognition, 

data analysis, knowledge representation, etc.The 

future trends in ECU innovations are influenced by 

the evolution of vehicles and vehicle electronics. 

The major upcoming trends, many already foreseen 

today, are acknowledged. The drastic evolution of 

vehicle electronics in every aspect will continue for 

at least two decades. Architects, designers, and 

engineers will have to develop new vehicle/ECU 

concepts that take full advantage of this 

development, especially regarding the introduction 

of new technologies such as ASICs. The potential 

arrival of completely electric or hybrid vehicles 

would cause a paradigm shift in the overall ECU 

approach, moving the focus from single dedicated 

electronics to distributed heterogeneous 

ECUs/supervisors. Furthermore, the spiral 

progression of complex cyber-physical systems will 

continue with intelligent vehicles, and vehicles with 

Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I).The high level of electronics 

and the vast number of ECUs imply the need for 

stringent safeguarding against erroneous behavior 

due to malfunctioning software, hardware, or 

sensors. This is further complicated by the use of 

wireless services. Current approaches mainly focus 

on safety, but there is an upcoming need to develop 

security measures as well to counter hidden/stealthy 

malfunctioning or attacks that can assure access to 

control the vehicle. Implementing secure ECUs will 

be a major challenge for both the OEMs, as well as 

for the software and hardware companies. At the 

same time, the embedded software of automotive 

ECUs is increasingly being developed concerning 

certain safety standards. Modern automotive safety 

standards define high-level safety goal objectives 

that have to be met using a concept of safety 

'hurdles' of increasing safety integrity levels. Safety 

requirements need to be allocated to the system 

using safety techniques and mechanisms. This 

results in costly system re-design and increases the 

difficulty and cost of verifying the correct 

implementation and effectiveness. Although the 

allocation of safety requirements to the system is 
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critical in ensuring safety, it is not specified or 

addressed in the existing standards. 
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