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Abstract 

In this paper we study the stochastic modeling and analysis of a repairable single unit system using Weibull 

distribution as it models a broad range of random variables,largely in the nature of a time to failure or time 

between events.Here we have considered three types of failures- abrupt, wear-out, and intermittent failures 

and concept of MOT(Maximum operation time) in which system goes under preventive maintenence.It is 

assumed that all types of failure and repair rates follow the Weibull distribution, and a single repairman can 

attend to all kinds of failures and preventive maintenance. By employing Semi-Markov, Regenerative Point 

Techniques and the Weibull distribution various system performance measures, cost analysis and busy period 

analysis also examined in this model. In additionally, by using some system performance measures we provide 

the numerical illustration with numerically and graphically. 
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1  Introduction 

Reliability analysis plays a pivotal role in ensuring the performance of complex systems across various 

domains, from manufacturing and healthcare to transportation and telecommunications. The assessment of a 

system’s reliability not only aids in minimizing downtime and optimizing maintenance schedules but also 

contributes significantly to cost-effective operations and enhanced safety. The study of reliability in single 

unit repairable systems has long been a subject of interest within the field of reliability engineering. 

Researchers have endeavoured to develop models that accurately depict the dynamic behaviour of such 

systems, accounting for the inherent complexities of the repair processes and various failure modes. Early 

works by Barlow and Hunter (1960) [1]laid the foundation for understanding the reliability of repairable 

systems, emphasizing the importance of incorporating failure and repair rates into models. The application of 

Semi-Markov and Regenerative Point Techniques in reliability modeling is a relatively recent development. 

This technique, as introduced by Grabski and Tondel (2010), focuses on identifying regenerative points within 

a system’s life cycle, enabling a more detailed and accurate modeling of stochastic processes. The Weibull 

distribution has been widely used in reliability analysis due to its flexibility in modeling the distribution of 

failure times. Researchers have successfully integrated the Weibull distribution into various reliability 

models, enhancing their accuracy in predicting failure and repair times. This integration is particularly 

relevant when dealing with wear-out failures, where the Weibull distribution can capture the characteristic 

wear-out behavior..D Kuntal, Kumar Ashish,et al.[2] studied the analysis of the redundant system of 

non-identical units using the Weibull Distribution. Another study by Hemant Kumar, Pathak[3] has been 

carried out in Stochastic Modelling and Reliability Analysis of an R O Membrane System Used in Water 

Purification System with Patience – Time for Repair. Indeewar Kumar, Ashish, et al.[4]further extended their 

work in Stochastic modeling of non-identical redundant systems with priority, preventive maintenance, and 



Hemant Kumar Saw, IJECS Volume 13 Issue 01 January, 2024  Page 25992 

Weibull failure and repair distributions. Ashish Kumar, Monika S Barak, Kuntal Devi [5] approached a 

reliability model of a redundant system having one original and one duplicate unit developed with an 

immediate repair facility. Repairman conducts the preventive maintenance of the unit after a pre-specific time 

to enhance the performance and efficiency of the system. All random variables follow the Weibull 

distribution. Ashish Kumar and Monika Saini [6]carried out their work with the objective to perform RAMD 

analysis, and Failure Modes and Effects Analysis (FMEA) unified with the development of a novel stochastic 

model using Markovian approach to estimate the Steady-State Availability (SSA) of the TIUP. Nivedita 

Gupta, Ashish Kumar, and Monika Saini[7] investigate various reliability measures of generators used in STP 

through the RAMD approach at the component level. For this purpose, mathematical models using the 

Markovian birth-death process have been developed for all subsystems of the generator. further Hemant 

Kumar saw and V.K.Pathak[8] have extended their work in reliability modeling and analysis of single unit 

system with environmental failure and PM AT MOT.  

 In this Paper authors have paid attention to a single unit repairable systems which can be repaired 

using minimum scheduled maintenance.Three types of failures are taken abrupt,wear out and intermittent 

failures.The characterization of the three types of failures individually, there remains a gap in the integration 

of these elements with the Weibull distribution.The majority of the studies’ researchers assumed that all 

random variables contributing to the unit’s failure time distributed exponentially and repair intervals were 

either randomly or constantly distributed. However, the majority’s performance of most of the industrial 

systems changes as time goes on. Thus, their repair and failure are not always constantly distributed they can 

also act as a arbitrary distribution.So, weibull distribution act as essential alternative to exponential 

distribution. This research seeks to bridge this gap by applying Semi-Markov Regenerative Point techniques 

and the Weibull distribution to develop a comprehensive model that accounts for abrupt, wear-out, and 

intermittent failures within a single unit repairable system, offering a holistic approach to reliability analysis 

that combines the benefits of both techniques. 

 akefnmarkthefnmark)   

 

2  Model description 

 In this study system without standby unit is taken.The performance of the systems gets effected due to 

abrupt, wear-out, and intermittent failures but requires less maintenance.An abrupt failure refers to a sudden 

and unexpected breakdown ,so it leads to total failure of the system, intermittent failure includes 

unpredictable,irregular fault which can also lead to total failure whereas wear-out failure occurs due to fatigue 

So system will experience partial failure.After Maximum operation time preventive maintenence has been 

applied to the system to ensure the continuous operation of the system . The system restores its normal 

working condition after the fault is removed by the single repairman.All random variables are statistically 

independent.The performance of most of the systems varies with respect to passes of time.So,their repair and 

failure are not necessarily constantly distributed but may behave as any arbitrary distribution.So, here Weibull 

distribution is useful. 

 

Assumptions 
 For modeling of the system following assumptions have been taken. 

1. A single repairman always available for the failure situation. 

2. Abrupt and intermittent failures lead system to total failure and wearout failure leads to partial 

failure. 

3. When the failure of the unit is detected the regular repairmen immediately attends the unit. 

4. The system might fail from a degraded state, repair has been performed in failed and partially failed 

state. 

5. Preventive maintenance has been applied to the system after Maximum operation time. 

6. All random variables are statistically distributed. 

7. Both the failure and repair rate follows the weibull distribution. 

8. It is possible to simulate both increasing and decreasing failures rates using the Weibull failure 

distribution. 

 

System Notation:  
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 P M   Preventive 

Maintenence 

MTSF   Mean time to 

system failure 

 /∗   Symbol for 

Laplace 

-Steiltjes 

transform/ 

Laplace 

Transform 

©   Symbol for 

Laplace-Stieltj

es convolution 

/Laplace 

convolution  

𝑆0   Initially the 

components 

are in working 

condition and 

the system 

works with full 

efficiency 

 𝑆1   The system 

gets partially 

failed due to 

wearout 

failure.  

𝑆2   The system is 

failed due to 

abrupt failure. 

𝑆3   System is 

failed due to 

intermittent 

failure. 

𝑆4   Preventive 

Maintenance 

state. 

𝛼/𝛽/𝛾/𝜆/𝜃/
𝜒/𝑘//𝑙  

 Scale 

Parameter. 

𝜂 > 0   Common 

Shape 

Parameter. 

𝑓(𝑡)   Probability 

density 

function and 

cummulative 

density 

function of 

time for P.M 

after maximum 

operation time. 

𝑔𝑖(𝑡)/𝐺𝑖(𝑡)   pdf /cdf of 

repair time for 
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partial failure 

due to 

wearout,Total 

failure due to 

abrupt and 

intermittent 

failure.  

𝑓1(𝑡)   PDF of failure 

rate of normal 

to partial 

failure due to 

wearout 

failure. 

𝑓2(𝑡)   PDF of failure 

rate from 

normal to Total 

failure due to 

abrupt failure. 

𝑓3(𝑡)   PDF of failure 

rate of Total 

failure due to 

intermittent 

failure. 

𝑓4(𝑡)   PDF of failure 

rate from 

partial failure 

to Total failure 

due to wearout 

failure. 

 

  

 𝑓1(𝑡)   

= 𝜆 =

𝜆𝜂𝑡𝜂−1𝑒−(𝜆𝑡𝜂)𝑑𝑡  

𝑓2(𝑡)   

= 𝛾 =

𝛾𝜂𝑡𝜂−1𝑒−(𝛾𝑡𝜂)𝑑𝑡  

𝑓3(𝑡)   

=

𝑘𝜂𝑡𝜂−1𝑒−(𝑘𝑡𝜂)𝑑𝑡  

𝑓4(𝑡)   = 

𝛼𝜂𝑡𝜂−1𝑒−(𝛼𝑡𝜂)𝑑𝑡  

𝑔1(𝑡)   

=

𝜃𝜂𝑡𝜂−1𝑒−(𝜃𝑡𝜂)𝑑𝑡 

𝑔2(𝑡)   

=

𝑙𝜂𝑡𝜂−1𝑒−(𝑙𝑡𝜂)𝑑𝑡  

𝑔3(𝑡)   

=

𝜂𝑡𝜂−1𝑒−(ℎ𝑡𝜂)𝑑𝑡 

𝑔4(𝑡)   
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= 𝛽 =

𝛽𝜂𝑡𝜂−1𝑒−(𝛽𝑡𝜂)𝑑𝑡  

𝑓(𝑡)   

= 𝜒 =

𝜒𝜂𝑡𝜂−1𝑒−(𝜒𝑡𝜂)𝑑𝑡  

 

  

Table  1: Set Of Notations 

   

 

 
Figure  1: State Transition diagram 

   

3  Reliability Analysis Of The Steystem 

3.1  Transition Probabilities and Mean Sojourn Time 

Using simple Probailistic formula,the expressions for transition probabilities in steady state are as follows:  

 𝑃𝑖𝑗 = 𝑄𝑖𝑗(∞) = ∫  𝑞𝑖𝑗(𝑡)𝑑𝑡𝑎𝑠 (3.1) 

 

 

 𝑄01(𝑡) = ∫  
∞

0
𝑓1(𝑡)𝐹(𝑡)𝐺2(𝑡)𝑑𝑡 = ∫  

∞

0
𝜆𝜂𝑡𝜂−1𝑒−(𝜆𝑡𝜂). 𝑒−(𝛼𝑡𝜂)𝑒−(𝜃𝑡𝜂)𝑑𝑡 (3.2) 

  

 = 𝜆 ∫  
∞

0
𝜂𝑡𝜂−1. 𝑒−(𝜆+𝛼+𝜃).𝑡𝜂

𝑑𝑡 (3.3) 

 put, 

 𝑡𝜂 = 𝑧 
 

 = 𝜆 ∫  
∞

0
𝑒−(𝜆+𝛼+𝜃)𝑧𝑑𝑧 (3.4) 

  

 = 𝜆 [
𝑒−(𝜆+𝛼+𝜃)𝑧

−(𝜆+𝛼+𝜃)
]
0

∞

 (3.5) 
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 =
𝜆

−(𝜆+𝛼+𝜃)
[0 − 1] (3.6) 

  

 =
𝜆

𝜆+𝛼+𝜃
 (3.7) 

  

 𝑄02(𝑡) = ∫  
∞

0
𝑔2(𝑡)𝐹1(𝑡)𝐹(𝑡)𝑑𝑡 = ∫  

∞

0
𝜃𝜂𝑡𝑛−1𝑒−(𝜃𝑡𝜂). 𝑒−(𝜆𝑡𝜂)𝑒−(𝛼𝑡𝜂)𝑑𝑡 (3.8) 

  

 𝑄03(𝑡) = ∫  
∞

0
𝑓(𝑡)𝐹1(𝑡)𝐺2(𝑡)𝑑𝑡 = ∫  

∞

0
𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂). 𝑒−(𝜆𝑡𝜂)𝑒−(𝜃𝑡𝜂)𝑑𝑡 (3.9) 

  

 𝑃01 + 𝑃02 + 𝑃03 =
𝜆

𝜆+𝛼+𝜃
+

𝜃

𝜆+𝛼+𝜃
+

𝛼

𝜆+𝛼+𝜃
= 1 (3.10) 

  

 𝑄10(𝑡) = ∫  
∞

0
𝑔𝑟(𝑡)𝐹2(𝑡). 𝐹3(𝑡)𝑑𝑡 = ∫  

∞

0
𝑘𝜂𝑡𝑛−1𝑒−(𝑘𝑡𝜂). 𝑒−(𝛽𝑡𝜂). 𝑒−(𝜆𝑡𝜂)𝑑𝑡 (3.11) 

  

 𝑃10 =
𝑘

𝑘+𝛽+𝜆
 (3.12) 

  

 𝑄12 = 𝑄12(𝑡) = ∫  
∞

0
𝑓3(𝑡). 𝐺𝑟(𝑡). 𝐹2(𝑡)𝑑𝑡 = ∫  

∞

0
𝛾𝜂𝑡𝑛−1𝑒−(𝜆𝑡𝜂). 𝑒−(𝑘𝑡𝜂). 𝑒−(𝛽𝑡𝜂)𝑑𝑡 (3.13) 

  

 𝑃12 =
𝛾

𝑘+𝛽+𝜆
 (3.14) 

  

 𝑄14 = 𝑄14(𝑡) = ∫  
∞

0
𝑓2(𝑡). 𝐺𝑟(𝑡). 𝐹3(𝑡)𝑑𝑡 = ∫  

∞

0
𝛽𝜂𝑡𝑛−1𝑒−(𝛽𝑡𝜂). 𝑒−(𝑘𝑡𝜂). 𝑒−(𝛾𝑡𝜂)𝑑𝑡 (3.15) 

  

 𝑃14 =
𝛽

𝛽+𝑘+𝜆
 (3.16) 

  

 𝑝10 + 𝑝12 + 𝑝14 = 1 (3.17) 

 

 

 𝑄20(𝑡) = ∫  
∞

0
𝑔𝑟𝑒(𝑡)𝐹(𝑡)𝑑𝑡 = ∫  

∞

0
𝜂𝑡𝑛−1𝑒−(ℎ𝑡𝜂). 𝑒−(𝛼𝑡𝜂)𝑑𝑡 (3.18) 

  

 =
ℎ

ℎ+𝛼
= 𝑃20 (3.19) 

  

 𝑃20 = 1 (3.20) 

  

 𝑄30(𝑡) = ∫  
∞

0
𝑓(𝑡)𝑑𝑡 = ∫  

∞

0
𝛼𝜂𝑡𝑛−1𝑒−(𝛼𝑡𝜂)𝑑𝑡 (3.21) 

  

 𝑃30 = 1 (3.22) 

  

 𝑄40(𝑡) = ∫  
∞

0
𝑔𝑟(𝑡)𝑑𝑡 = ∫  

∞

0
𝑘𝜂𝑡𝑛−1𝑒−(𝑘𝑡𝜂)𝑑𝑡 (3.23) 

  

 𝑃40 = 1 (3.24) 

 

Let T denote the time to system failure then the mean sojourn times (𝜇𝑖)in the state 𝑆𝑖 are given by  

 (𝜇𝑖) = 𝐸(𝑡) = ∫  
∞

0
𝑃[𝑇 > 𝑡]𝑑𝑡 (3.25) 

 Therefore,the mean sojourn times (𝜇𝑖) at regenerative states 𝑆𝑖 are as follows:- 

 

 𝜇0(𝑡) = ∫  
∞

0
𝐹1(𝑡)𝐺2(𝑡)𝐹(𝑡)𝑑𝑡 (3.26) 
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 =
Γ(1+

1

𝜂
)

(𝛼+𝜆+𝜃)
1
𝜂

 (3.27) 

  

 𝜇1(𝑡) = ∫  
∞

0
𝐺𝑟(𝑡)𝐹2(𝑡)𝐹3(𝑡)𝑑𝑡 =

Γ(1+
1

𝜂
)

(𝛾+𝑘+𝛽)
1
𝜂

 (3.28) 

  

 𝜇2(𝑡) = ∫  
∞

0
𝐺𝑟𝑒(𝑡)𝐹(𝑡)𝑑𝑡 =

Γ(1+
1

𝜂
)

(ℎ+𝛼)
1
𝜂

 (3.29) 

  

 𝜇3(𝑡) = ∫  
∞

0
𝐺1(𝑡)𝑑𝑡 =

Γ(1+
1

𝜂
)

(𝑙)
1
𝜂

 (3.30) 

 

4  Mean Time To System Failure: 

Let 𝜋𝑖(𝑡) be the c.d.f of first passage time from the regenerative state 𝑆𝑖 to a failed state.Regarding the failed 

state as absorbing state,we have the following recursive relations for 𝜋𝑖(𝑡) :  

 𝜋𝑖(𝑡) = ∑  𝑗 𝑄𝑖𝑗(𝑡)©𝜋𝑗(𝑡) + ∑  𝑘 𝑄𝑖,𝑘(𝑡) (4.1) 

  

 𝜋0(𝑡) = 𝑄01(𝑡)©𝜋1(𝑡) + 𝑄02(𝑡) + 𝑄03(𝑡) (4.2) 

  

 𝜋1(𝑡) = 𝑄10(𝑡)©𝜋0(𝑡) + 𝑄12(𝑡) + 𝑄14(𝑡) (4.3) 

 We are taking Laplace Steiltjes transform of the above equation:  

 (𝜋0
∗∗, 𝜋1

∗∗) = 𝑄∗∗(−1)(𝑄02
∗∗ + 𝑄03

∗∗ , 𝑄12
∗∗ + 𝑄14

∗∗) (4.4) 

 where,  

 𝑄∗∗(−1) =

[
 
 
 
 
 
1 −𝑄01

∗∗ −𝑄02
∗∗ −𝑄03

∗∗ 0
−𝑄10

∗∗ 1 −𝑄12
∗∗ 0 𝑄14

∗∗

0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

]
 
 
 
 
 

[
 
 
 
 
 
𝜋0

∗∗

𝜋1
∗∗

𝜋2
∗∗

𝜋3
∗∗

𝜋4
∗∗

]
 
 
 
 
 

=

[
 
 
 
 
 
𝑄02

∗∗ + 𝑄03
∗∗

𝑄12
∗∗ + 𝑄14

∗∗

0
0
0

]
 
 
 
 
 

 (4.5) 

 

Now, by solving the above equation for 𝜋0
∗∗(𝑠), we get  

 𝜋0
∗∗(𝑠) =

𝑁(𝑠)

𝐷(𝑠)
 (4.6) 

 where;  

 𝐷(𝑆) =
|

|

−1 𝑄01
∗∗ 𝑄02

∗∗ 𝑄03
∗∗ 0

𝑄10
∗∗ −1 𝑄12

∗∗ 0 𝑄14
∗∗

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

|

|
 (4.7) 

 and  

 𝑁(𝑆) =
|

|

𝑄02 + 𝑄03 𝑄0
∗∗ 𝑄02

∗∗ 𝑄03
∗∗ 0

𝑄12 + 𝑄14 −1 𝑄12
∗∗ 0 𝑄14

∗∗

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

|

|
 (4.8) 

 Therefore,  

 𝐷 = 1 − 𝑝01𝑝10 (4.9) 

 and,  

 𝑁 = 𝜇0 + 𝜇1𝑝01 (4.10) 

 The MTSF when the given system starts from the state ’0’ is:  
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 𝑀𝑇𝑆𝐹 = lim
𝑠→0

1−𝜙0
∗∗(𝑠)

𝑠
=

𝐷′(0)−𝑁′(0)

𝐷(0)
=

𝑁

𝐷
 (4.11) 

  

 𝐸(𝑇) =
𝜇0+𝜇1𝑝01

1−𝑝01𝑝10
 (4.12) 

  

5  Availability: 

The availability 𝐴𝑖(𝑡) of a system is defined as the probability that the system is in up-state and provide 

service when needed, at the instant ’t’ given that the system entered regenerative state 𝑆𝑖 at t=0. The recursive 

relations for 𝐴𝑖(𝑡) are given as  

 𝐴0(𝑡) = 𝑀0(𝑡) + 𝑞01(𝑡)©𝐴1(𝑡) + 𝑞02(𝑡)©𝐴2(𝑡) + 𝑞03(𝑡)©𝐴3(𝑡) (5.1) 

  

 𝐴1(𝑡) = 𝑀1(𝑡) + 𝑞10(𝑡)©𝐴0(𝑡) + 𝑞12 + 𝑞14 (5.2) 

  

 𝐴2(𝑡) = 𝑀2(𝑡) + 𝑞20(𝑡)©𝐴0(𝑡) + 𝑞23 (5.3) 

  

 𝐴3(𝑡) = 𝑞30(𝑡)©𝐴0(𝑡) (5.4) 

  

 𝐴4(𝑡) = 𝑞40(𝑡) (5.5) 

 

Applying Laplace transformation of the above relations we get,  

 𝐴0
∗(𝑠) =

𝑁1(𝑠)

𝐷1(𝑠)
 (5.6) 

 Writing in matrix form: 

 

 (𝐴0
∗ , 𝐴1

∗ , 𝐴2
∗ , 𝐴3

∗ , 𝐴4
∗ , ) = 𝑞−1(𝑀0

∗, 𝑀1
∗, 𝑀2

∗, 0,0) (5.7) 

 Where, 

 

 𝑞−1 =

[
 
 
 
 
 
1 −𝑞01

∗ −𝑞02
∗ −𝑞03

∗ 0

−𝑞10
∗ 1 −𝑞12 0 −𝑞14

−𝑞20
∗ 0 1 0 0

−𝑞30
∗ 0 0 1 0

−𝑞40
∗ 0 0 0 1

]
 
 
 
 
 

[
 
 
 
 
 
𝐴0

∗

𝐴1
∗

𝐴2
∗

𝐴3
∗

𝐴4
∗

]
 
 
 
 
 

=

[
 
 
 
 
 
𝑀0

∗

𝑀1
∗

0
0
0

]
 
 
 
 
 

 (5.8) 

 Therefore,  

 𝑁1(𝑆) =
|

|

𝑀0 𝑞01
∗ 𝑞02

∗ 𝑞03
∗ 0

𝑀1 −1 𝑞12 0 𝑞14

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

|

|
 (5.9) 

 

 

 𝑁1 = 𝜇0 + 𝜇1𝑝01 (5.10) 

  

6  Busy Period Of Regular Repair Person: 

Let 𝐵𝑖(𝑡) be the probability that the server is busy repairing the unit at an instant ’t’ given that the system 

entered state 𝑆𝑖 at t=0. 

The steady state, the function of time for which the regular repair facility is busy in repair is given by:-  

 𝐵0 = lim
𝑠→0

𝑠𝐵0
∗(𝑠) (6.1) 

  

 =
𝑁3(𝑠)

𝐷1(𝑠)
 (6.2) 

  

 𝐵0(𝑡) = 𝑞01(𝑡)©𝐵1(𝑡) + 𝑞02(𝑡)©𝐵2(𝑡) + 𝑞03(𝑡)©𝐵3(𝑡) (6.3) 
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 𝐵1(𝑡) = 𝑢1(𝑡) + 𝑞10(𝑡)©𝐵0(𝑡) + 𝑞12(𝑡)©𝐵2(𝑡) + 𝑞14(𝑡)©𝐵4(𝑡) (6.4) 

  

 𝐵2(𝑡) = 𝑢2(𝑡) + 𝑞20(𝑡)©𝐵0(𝑡) (6.5) 

  

 𝐵3(𝑡) = 𝑢3(𝑡) + 𝑞30(𝑡)©𝐵0(𝑡) (6.6) 

  

 𝐵4(𝑡) = 𝑞40(𝑡)©𝐵0(𝑡) (6.7) 

 Therefore,  

 𝑁3(𝑆) =
|

|

0 𝑞01
∗ 𝑞02

∗ 𝑞03
∗ 0

𝑢1 −1 𝑞12 0 𝑞14

𝑢2 0 −1 0 0
𝑢3 0 0 −1 0
0 0 0 0 −1

|

|
 (6.8) 

 

 

 𝑁3 = 𝜇1𝑝01 + 𝜇2(𝑝01𝑝12 + 𝑝02) + 𝜇3𝑝03 (6.9) 

 

 

7  Due To Preventive Maintenance 

Let 𝑃𝑖(𝑡) be the probability that the system is under preventive maintenance by a regular repair person at the 

time ’t’. Now, by solving the above equations given for 𝑃0
∗(𝑠). we get a busy period of the server due to 

adaptive maintenance given by:-  

 𝑃0
∗ = lim

𝑠→0
𝑠𝑃0

∗(𝑠) (7.1) 

  

 =
𝑁4(𝑠)

𝐷1(𝑠)
 (7.2) 

  

 𝑃0(𝑡) = 𝑞01(𝑡)©𝑃1(𝑡) + 𝑞02(𝑡)©𝑃2(𝑡) + 𝑞03(𝑡)©𝑃3(𝑡) (7.3) 

  

 𝑃1(𝑡) = 𝑞10(𝑡)©𝑃0(𝑡) + 𝑞12(𝑡)©𝑃2(𝑡) + 𝑞14(𝑡)©𝑃4(𝑡) (7.4) 

  

 𝑃2(𝑡) = 𝑞20(𝑡)©𝑃0(𝑡) (7.5) 

  

 𝑃3(𝑡) = 𝑞30(𝑡)©𝑃0(𝑡) (7.6) 

  

 𝑃4(𝑡) = 𝑤4(𝑡) + 𝑞40(𝑡)©𝑃0(𝑡) (7.7) 

 

Where,  

 𝑁4 = 𝜇4𝑝01𝑝14 (7.8) 

 Case studies with discussions : 

(I) When shape parameter 𝜂 = 0.5 then failure of the unit due to abrupt, wear-out, and intermittent 

failures,adaptive maintenance, repair by regular repairman time distribution reduces to:-  

𝑓1(𝑡) =
𝜆

2√𝑡
𝑒(−𝜆√𝑡) , 𝑓2(𝑡) = 𝛽𝜂𝑡𝜂−1𝑒−(𝛽𝑡𝜂)𝑑𝑡 =

𝛽

2√𝑡
𝑒(−𝛽√𝑡) , 𝑔𝑟𝑒(𝑡) =

ℎ

2√𝑡
𝑒(−ℎ√𝑡) , 𝑓3(𝑡) =

𝛾

2√𝑡
𝑒(−𝛾√𝑡), 𝑓(𝑡) =

𝛼

2√𝑡
𝑒(−𝛼√𝑡), 

𝑔2(𝑡) =
𝜃

2√𝑡
𝑒(−𝜃√𝑡), 𝑔𝑟(𝑡) =

𝑘

2√𝑡
𝑒(−𝑘√𝑡), 𝑔1(𝑡) =

𝑙

2√𝑡
𝑒(−𝑙√𝑡). 

(II)When shape parameter 𝜂 = 1.0  then repair/ failure of the unit, adaptive maintenance, time 

distribution reduces to exponential then:-  

𝑓1(𝑡) = 𝜆𝑒−(𝜆𝑡) , 𝑓2(𝑡) = 𝛽𝑒−(𝛽𝑡) , 𝑓3(𝑡) = 𝛾𝑒−(𝛾𝑡) , 𝑓(𝑡) = 𝛼𝑒−(𝛼𝑡) , 𝑔2(𝑡) = 𝜃𝑒−(𝜃𝑡) , 𝑔𝑟(𝑡) =
𝑘𝑒−(𝑘𝑡), 𝑔𝑟𝑒(𝑡) = 𝑒−(ℎ𝑡), 𝑔1(𝑡) = 𝑙𝑒−(𝑙𝑡) 

(III)When shape parameter 𝜂 = 2.0 then failure /arrival time of the server/repair time distributions 
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reduces to rayleigh having the pdf:-  

𝑓1(𝑡) = 2𝜆𝑒−(𝜆𝑡2) , 𝑓2(𝑡) = 2𝛽𝑒−(𝛽𝑡2) , 𝑓3(𝑡) = 2𝛾𝑒−(𝛾𝑡2) , 𝑓(𝑡) = 2𝛼𝑒−(𝛼𝑡2) , 𝑔2(𝑡) = 2𝜃𝑒−(𝜃𝑡2) , 

𝑔𝑟(𝑡) = 2𝑘𝑒−(𝑘𝑡2), 𝑔𝑟𝑒(𝑡) = 2𝑒−(ℎ𝑡2) , 𝑔1(𝑡) = 2𝑙𝑒−(𝑙𝑡2) 

 

 
Figure  2: MTSF Vs FAILURE RATE 

   

Graphical analysis : The curve for MTSF and Failure rate have been drawn for different values of shape 

parameters and values of repair rate of the repair person, preventive maintenance, and failure rates have been 

depicted.To See the behaviour of different parameter on the system,we take shape parameter 𝜂 = 0.5,1.0,2.0 

from fig number 2 we observe that MTSF decreases as the failure 𝛽 increases from 0.04 to 0.1. 
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