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Abstract 

In recent years, with the increase in urbanization, it has become important to keep track of infrastructure in 

a geographical area. Urban planners rely on accurate building area calculations to assess the spatial 

characteristics and dynamics of built environments, informing critical decision-making processes. Satellite 

technologies have been developing rapidly and applied to many remote sensing applications due to which 

high-resolution images of a geographical area are obtained with much ease. To estimate the area of 

buildings, deep neural networks are employed to analyze images from high-resolution satellite data. This 

involves extracting valuable semantic features and segmenting all buildings. Subsequently, four models are 

evaluated and compared to assess their performance in accurately segmenting buildings within the images. 

Upon training and evaluation, the models are compared based on the mIoU score, with the UNet model 

(utilizing a ResNet18 encoder) achieving the highest mIoU score of 0.83. 
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1. Introduction  

Increase in urbanization has led to various problems 

nowadays. While urbanization can bring about 

economic development, improved infrastructure, 

and increased opportunities, it also gives rise to 

several pressing issues like overcrowding, housing 

shortages, inadequate infrastructure, environmental 

degradation, and social inequalities. Addressing the 

problems of urbanization requires careful urban 

planning, sustainable development strategies, and 

effective governance. 

Calculating the building area plays a crucial role in 

addressing these issues and promoting sustainable 

urban development. Calculating building area 

relates directly to urbanization as it influences the 

spatial distribution and intensity of development 

within cities. When urban areas expand without 

proper planning, there is a tendency for inefficient 

land use and excessive building sprawl. This can 

lead to the consumption of valuable agricultural 

land, loss of natural habitats, and increased pressure 

on infrastructure systems. By accurately calculating 

the building area, urban planners and policymakers 

can gain insights into the existing urban fabric and 

make informed decisions to tackle the challenges of 

urbanization. 

 

 

 

 
 

Figure 1: Some samples from the dataset. 

 

Calculating building areas helps in solving the 

problem of urbanization in various ways including 

effective land use, infrastructure planning, 

sustainable development, social equality, etc.  
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In recent years, there has been substantial and 

accelerated progress in satellite technologies, 

leading to their widespread utilization across 

various remote sensing applications. Consequently, 

the utilization of satellite imagery for the detection 

and extraction of buildings has emerged as a 

prevailing trend. However, the ground resolution of 

satellite images is relatively low, and large errors 

are caused when calculating the area, which will 

affect the property value assessment. There are two 

main reasons why satellite images are used for 

property evaluation. First, equipped with a high-

definition camera, high-resolution images can be 

easily procured even at the centimeter level. 

Second, in some disaster-prone areas, using satellite 

images to collect data can reduce the risk. 

The technique used in this paper to calculate the 

area of the buildings is segmentation. Image 

segmentation is the process of partitioning a digital 

image into multiple image segments, also known as 

image regions or image objects. Recently, 

Convolutional Neural Networks (CNN) [1] are 

showing exceptional results in the field of 

segmentation. The goal of segmentation is to 

simplify or change the representation of an image 

into something that is more meaningful and easier 

to analyze. Image segmentation is typically used to 

locate objects and boundaries in images. More 

precisely, image segmentation is the process of 

designating a label to every pixel in an image such 

that pixels with the same label share certain 

characteristics. There are two types of segmentation, 

semantic and instance. Semantic segmentation and 

instance segmentation are two advanced techniques 

used in computer vision and image processing to 

understand and analyze images at a more granular 

level. While both methods involve segmenting 

images, they differ in their objectives and outputs. 

Semantic segmentation focuses on assigning 

semantic labels to each pixel in an image, grouping 

them into meaningful categories. The goal is to 

understand the overall scene and identify different 

objects or regions based on their semantic class. For 

example, in an image containing a road, cars, and 

pedestrians, semantic segmentation would assign 

each pixel to a class such as "road," "car," or 

"person." The output of semantic segmentation is a 

pixel-level mask that represents the class label for 

each pixel in the image. It provides a holistic 

understanding of the scene without differentiating 

individual instances. 

Instance segmentation goes beyond semantic 

segmentation by not only assigning semantic labels 

but also distinguishing between individual instances 

of objects within a particular class. It aims to 

identify and differentiate each distinct object 

instance separately. For example, in an image with 

multiple cars, instance segmentation would label 

each car with a unique identifier or instance ID. The 

output of instance segmentation is a pixel-level 

mask that not only assigns a semantic label but also 

assigns a unique ID to each pixel corresponding to a 

specific instance. This enables precise object 

detection, tracking, and analysis at the individual 

object level. The result of image segmentation is a 

set of segments that collectively cover the entire 

image, or a set of contours extracted from the image 

(see edge detection). Each pixel within a given 

region exhibits similarity in terms of certain 

characteristics or computed properties, such as 

color, intensity, or texture. 

In this paper, segmentation is utilized to distinguish 

buildings from the rest of the area. 

 

 

Figure 2: Semantic segmentation vs Instance 

segmentation. 

 

The result of semantic segmentation in this case is 

to extract the contour of the building and the 

number of pixels within the mask of the building. 

To calculate the area, the unit area represented by 

each pixel is determined and the building area is 

estimated by adding area within the pixels classified 

as buildings by the model. 

2. Related work 

Building area estimation using deep learning 

models [2] applied to satellite imagery has gained 

significant attention in recent years. Researchers 

have explored various approaches and techniques to 

accurately estimate the area of buildings, 

contributing to the advancement of this field. In this 

section, key studies that are relevant to the research 

on the comparative analysis of PPM, UPerNet, 

HRNet, and U-Net models for building area 

estimation are reviewed. 

 

Zhao et al. [3] proposed the PSPNet, a deep learning 

framework designed for semantic segmentation 
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tasks. The PSPNet introduced a pyramid pooling 

module that effectively captures multi-scale 

contextual information, enabling more accurate 

segmentation results. By leveraging the pyramid 

pooling module, the PSPNet demonstrated superior 

performance in scene understanding tasks, including 

building area estimation. Incorporating the PPM 

module into the ResNet architecture improves the 

accuracy of building area estimation by leveraging 

its multi-scale context aggregation capabilities. 

Xiao et al. [4] proposed the UPerNet framework to 

achieve comprehensive scene understanding 

through precise semantic segmentation. Unified 

Perceptual Parsing (UPP) focuses on holistic scene 

understanding by simultaneously addressing pixel-

level semantic segmentation and global scene 

parsing. The techniques and approaches employed 

in UPP are adaptable to building area estimation 

tasks. Considering the holistic context of the scene, 

UPP improves the accuracy and contextual 

understanding of building segmentation, enhancing 

the precision of building area estimation. 

Sun et al. [5] proposed HRNetV2, a High-

Resolution Network that maintains high-resolution 

feature maps throughout the network to capture 

fine-grained details. HRNetV2 has demonstrated 

state-of-the-art performance in various vision tasks, 

including semantic segmentation. Emphasizing the 

significance of capturing fine-grained details for 

accurate building area estimation, HRNetV2 enables 

precise delineation of building boundaries and 

improves the accuracy of area estimation. 

Ronneberger et al. [6] proposed the U-Net 

architecture, originally designed for biomedical 

image segmentation. U-Net's encoder-decoder 

architecture with skip connections has been widely 

adopted in various segmentation tasks, including 

building area estimation from satellite imagery. The 

skip connections enable the network to effectively 

capture both low-level and high-level features, 

facilitating precise localization and segmentation of 

buildings. 

 

These relevant works provide important foundations 

and methodologies for this research on comparative 

analysis. By examining the strengths and unique 

characteristics of PPM, UPerNet, HRNet, and U-

Net models, valuable insights are learned about their 

performance in building area estimation. By 

comparing these models on metric mean IoU 

(mIoU), the most suitable model for accurate and 

efficient building area estimation from satellite 

imagery is determined. 

3. Proposal 

In this paper, four different segmentation models are 

trained on the same dataset and then are compared 

by evaluating each model on a separate validation 

dataset.  

3.1 Models 

Choice of models is crucial to any deep learning 

project or experiment. Given the limited 

computational resources, lightweight models are 

selected, which means that they have a smaller 

number of parameters so that models can be loaded 

easily onto GPU memory. 

 

Another factor for choosing the models is to 

consider what type of data they were originally 

designed to fit. Three out of four selected models 

were used before for similar kinds of data (satellite 

imagery) and hence their architecture better suits the 

target dataset. 

 

All the selected models employ an encoder-decoder 

based [7] approach. Encoder-decoder based models 

eliminate the need for fully connected layers, which 

means that models can be used for segmentation 

tasks using fully convolutional networks (FCNs) 

[8]. The encoder-decoder-based approach has 

become one of the most popular approaches for 

semantic segmentation. It has been used to achieve 

state-of-the-art results on a variety of datasets, 

including the PASCAL VOC [9] dataset and the 

Cityscapes [10] dataset. 

 

An FCN is composed of an encoder and a decoder. 

The encoder is responsible for extracting features 

from the image, while the decoder is responsible for 

upsampling the features and generating the final 

segmentation mask. 

 

Below is a brief overview of each of the models that 

are compared in this paper. 

 

3.1.1 ResNet18 + Pyramid Pooling Module 

This model, also called ResNet18_PPM, has 

ResNet18 as the encoder and Pyramid Pooling 

Network as its decoder. ResNets [11] or residual 

networks solve the problem of vanishing gradients 

when training very deep neural networks. ResNets 

tackle this issue by utilizing skip connections, also 

known as shortcut connections or identity 

mappings. These connections allow the gradient to 

bypass one or more layers and directly flow to 
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deeper layers, ensuring that the gradients remain 

strong and enabling better optimization. The key 

idea behind ResNets is to learn residual functions, 

meaning the network learns to approximate the 

difference between the desired output and the 

current output of the layers being bypassed. 

 

The residual block, which is the basic building 

block of a ResNet, consists of a set of convolutional 

layers followed by an element-wise addition 

operation that combines the input with the output of 

those layers. The input to the block is called the 

"identity" or the "shortcut connection", while the 

output is referred to as the "residual". By adding the 

residual to the identity, the network can learn to 

adjust the output of the convolutional layers, 

effectively allowing them to model the residual 

function. 

 

ResNet18 is a specific variant of the ResNet 

architecture that consists of 18 layers, including 

convolutional layers, batch normalization, ReLU 

activation functions, and pooling layers. 

 

The accuracy of convolutional networks depends on 

the global context information or features that they 

capture. The number of features captured relies on 

the receptive field of a network. There is often a 

mismatch between the receptive field of the network 

in theory and in practice, Pyramid Pooling Module 

(PPM) [3] addresses this problem by capturing 

multi-scale contextual information from an input 

feature map. It does so by feature fusion under 

different scales. It addresses the challenge of 

effectively incorporating global context information 

into the segmentation process. By aggregating 

information from multiple scales, the PPM enables 

the network to make more informed predictions 

about the semantic class of each pixel. 

 

Downsampling the input images by ResNet18, 

followed by feature extraction by PPM, and the 

final upsampling of the pooled features, the model 

can be successfully trained for semantic 

segmentation tasks. 

3.1.2 ResNet50 + UperNet 

This model, which is abbreviated as 

ResNet50_Upernet, has ResNet50 as the encoder 

and a network based on Feature Pyramid Network 

(FPN)[12] and Pyramid Pooling Module (PPM) as 

the decoder. 

 

ResNet50 is just another variant of a class of neural 

networks called ResNets. It consists of 50 layers, 

including convolutional layers, batch normalization, 

ReLU activation functions, and pooling layers. 

ResNet50 has significantly more layers compared to 

ResNet18, allowing it to capture richer and more 

diverse features from input images. 

 

The decoder is inspired by UPerNet [4] (Unified 

Perceptual Parsing Network), which combines both 

FCN and PPM to preserve high-quality semantic 

features and increase the empirical receptive field. 

In UPerNet, a PPM head is appended in the last 

layer of the back-bone network, before feeding the 

features to FCN.  

3.1.3 HRNetV2 

This model is the second version of the original 

HRNet [5] (High-Resolution Network) which 

preserves the high-resolution representations by 

connecting high-to-low-resolution convolutional 

feature maps in parallel. The model architecture 

employs repeating multi-resolution blocks. A multi-

resolution block consists of a multi-resolution group 

convolution and a multi-resolution convolution. 

 

In the original approach HRNetV1, only the feature 

maps from the high-resolution convolutions are 

considered, therefore only a subset of output 

channels from the high-resolution convolutions is 

used and other subsets from low-resolution 

convolutions are lost. This was tackled in 

HRNetV2 with a small modification by exploiting 

other subsets of channel output from low-resolution 

convolutions. This was achieved by rescaling the 

low-resolution feature maps through bilinear 

upsampling and concatenating with the high-

resolution feature maps. The benefit is that the 

capacity of the multiresolution convolution is fully 

utilized, and it adds only a small parameter count. 

3.1.4 UNet (With ResNet18 encoder) 

UNet is a specific type of encoder-decoder 

architecture that is widely used for semantic 

segmentation tasks. It is known for its symmetric 

structure which resembles the letter “U” (hence the 

name UNet) and skip connections that enable the 

fusion of low-level and high-level features. 
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Figure 3: U-Net architecture from the original 

paper [6]. 

 

UNet [6] architecture consists of two parts: encoder 

and decoder. The contracting path/encoder of UNet 

consists of multiple downsampling blocks, each 

typically composed of convolutional layers 

followed by pooling or strided convolutions. These 

blocks progressively reduce the spatial resolution of 

the feature maps while increasing the number of 

channels, capturing high-level semantic 

information. The expanding path/decoder of UNet 

consists of multiple upsampling blocks, each 

composed of upsampling layers followed by 

convolutional layers. The upsampling blocks 

progressively increase the spatial resolution of the 

feature maps while reducing the number of 

channels. Importantly, the UNet architecture 

includes skip connections that directly connect 

corresponding layers between the contracting and 

expanding paths. These skip connections enable the 

fusion of low-level details and high-level context, 

helping to refine the segmentation output. 

 

3.2 Modifications made to the models 

To get decent results on a different dataset. Some 

modifications to the models (mentioned in Section 

3.1) are made. Each modification is explained 

below. 

 

Loss Function 

For the models in Section 3.1.1, 3.1.2, and 3.1.3 the 

default negative log-likelihood loss (NLL loss) 

[13] function is replaced with dice loss [14]. NLL 

loss is calculated by the negative of the log of the 

probability that the model predicts the correct label. 

Dice loss is calculated using the Dice coefficient. 

The Dice coefficient is twice the intersection of two 

sets divided by the sum of the two sets. The loss is 

calculated as, 

 

 

                 
  |   | 

| |    | |
  

 

 

Dice loss has many advantages over NLL loss when 

it comes to semantic segmentation: 

 

1. Handling Class Imbalance: Semantic 

segmentation datasets typically exhibit class 

imbalance, where the number of background 

pixels far exceeds the number of foreground 

pixels. This class imbalance can lead to 

biased models that prioritize background 

predictions. Dice loss addresses this issue by 

explicitly emphasizing the correct prediction 

of foreground pixels, promoting accurate 

segmentation results even in imbalanced 

datasets. NLL loss, on the other hand, treats 

each class equally and may not effectively 

handle class imbalance. 

 

2. Similarity Measure: Dice loss directly 

measures the similarity between the 

predicted and ground truth segmentation 

masks using the Dice coefficient. It 

evaluates the overlap of foreground regions, 

making it more aligned with the evaluation 

metric used in semantic segmentation tasks. 

In contrast, NLL loss focuses on the 

probability distribution of different classes 

and may not directly capture the similarity 

or alignment between segmentation masks. 

3. Robustness to False Positives and Negatives: 

Dice loss is less sensitive to false positives 

and false negatives compared to NLL loss. 

NLL loss penalizes both types of errors 

equally, which can be problematic when 

dealing with segmentation tasks where false 

positives or false negatives have different 

consequences. Dice loss, by considering the 

overlap of the predicted and ground truth 

masks, encourages models to produce 

segmentations that have a better balance 

between false positives and false negatives, 

leading to more accurate and visually 

plausible results. 

 

4. Gradient Behavior: Dice loss often exhibits 

smoother and more stable gradients 
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compared to NLL loss. This smoothness can 

be beneficial for optimization during 

training, enabling more stable convergence 

and potentially avoiding issues like 

vanishing or exploding gradients. 

 

5. Direct Optimization of Evaluation Metric: 

Dice loss directly optimizes the Dice 

coefficient or a similar similarity measure. 

This means that minimizing the Dice loss 

during training encourages the model to 

directly improve the segmentation accuracy 

according to the evaluation metric. In 

contrast, NLL loss optimizes the probability 

distribution and may not explicitly correlate 

with the segmentation performance metric. 

 

Last Layer 

For the models in Sections 3.1.1, 3.1.2, and 3.1.3, 

the final softmax layer is replaced with a sigmoid 

layer. Softmax layers are commonly used in multi-

class classification problems, where there are more 

than two mutually exclusive classes. Sigmoid layers 

are primarily used in binary classification problems, 

where there are two classes. They are also used in 

multi-label classification tasks, where each input 

can belong to multiple classes simultaneously. In 

multi-label classification, each sigmoid output can 

be independently interpreted as the probability of 

the corresponding class being present. 

 

Evaluation Stack 

New functions are introduced like binary accuracy 

and area similarity, which give insight into the 

m o d e l ’ s  p e r f o r m a n c e . 

The default IoU function, which was intended for 

multi-class segmentation, is also updated to support 

binary class segmentation. As most of the area in 

the image belongs to the negative class, IoU 

function is adjusted to only consider positive labels 

when evaluating the model. 

 

4. Dataset 

The commercialization of the satellite industry has 

led to an increase in the amount of satellite data 

being collected. Increasing accessibility of state-of-

the-art deep learning algorithms have enabled 

developers to extract great insight from these 

satellite datasets. 

Dataset used in this study is hosted on the AIcrowd 

website for a mapping challenge [15]. This dataset 

is built on SpaceNet (v1) [16]. SpaceNet (v1) is 

built for building detection.  Private organizations 

such as CosmiQ Works, Radiant Solutions and 

NVIDIA have partnered to open source the 

SpaceNet dataset. The original SpaceNet dataset, 

introduced in the SpaceNet challenge in 2016, 

covers 2544 square kilometers of Rio De Janeiro 

with a ground sampling distance of 50cm. Ground 

sampling distance measures the area of ground 

covered in one pixel. The size of the full dataset is 

around 5.4 GB, with training (3.77 GB), validation 

(830 MB) and test (805 MB) splits consisting of 

280741, 60317 and 60697 tiles respectively. Each 

tile is a 300x300 RGB image and all the annotations 

are in MS COCO format. 

 

As the compute resources are limited, a small 

fraction of the dataset is used, consisting of only 

300 training images and 50 validation images. Each 

image is of size 300x300 pixels. For the models 

used in this paper, the original labels which are in 

MS COCO format are changed to binary masks, 

where each pixel is labeled either 1 or 0 based on 

whether that pixel is a part of a building or not. 

 

 

 
Figure 4: Ground truth image vs ground truth 

binary mask. 

 

5. Training and Evaluation 

The training and evaluation pipeline is fairly 

straightforward and is divided into two parts. The 

first training-evaluation pipeline is common for the 

first 3 models given in Table 1 and the second one 

is for the fourth model which is the UNet model. 

In the first training-evaluation pipeline, a 

configuration file is fed as input. This file contains 

parameters of a specific model architecture and 

other details like root directory of the dataset, 

location where the weights need to be saved and 

training hyperparameters like batch size, learning 

rate, number of epochs etc. Using these 

configurations, a segmentation model object is 

created along with a data loader object. The loss 

https://www.aicrowd.com/challenges/mapping-challenge
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function is then passed to the segmentation object. 

Following this, optimizers are instantiated, and 

subsequently, the model is trained for the number of 

epochs specified in the config file. The model is 

saved after each epoch, and the best model is 

utilized for evaluation. A low evaluation threshold 

is maintained due to the lack of high confidence in 

the output probabilities. This can be tackled with 

further tweaking of the models. 

 

All the models are trained on 300 images for 10 

epochs, and the model weights are saved after each 

epoch. Subsequently, the model is evaluated by 

calculating the IoU for the positive class. Training 

and evaluation are done on a laptop with 

Nvidia GTX1650 Ti with 4GB of VRAM. 

 

6. Result and discussion 

Training the dataset on four models requires some 

preprocessing as mentioned in sections above, the 

labels require converting to an appropriate format 

which is a binary segmentation mask. Due to 

limited compute resources, the original dataset is 

reduced to only 300 images. Additionally, models 

that are lightweight and have a small size are 

chosen. 

 

As seen in Table 1. UNet outperforms all models 

despite being the one with a smaller number of 

parameters. The reason why UNet might be 

outperforming the ResNet18 model in this case 

could be attributed to its ability to capture fine-

grained details and spatial context. The skip 

connections in UNet enable the model to leverage 

both high-level and low-level features effectively, 

helping to improve segmentation accuracy. 

Additionally, UNet’s architecture is specifically 

designed for semantic segmentation tasks. 

 

Actual Image       Ground Truth Mask      

Predicted mask 

 

 
 

(a) ResNet18_PPM 

 

 
 

     (b)     HrnetV2 

 

Figure 5: Comparing the binary masks predicted by 

(a) ResNet18_PPM and (b) HrnetV2 to the ground 

truth masks. 

 

On the other hand, models like ResNet with a 

pyramid pooling module might be more suited for 

image classification. On the other hand, HRNetV2’s 

architecture is specifically designed for pose 

estimation, therefore its low IoU score than UNet 

can be attributed to the different nature of the 

dataset. 
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Actual Image       Ground Truth Mask      

Predicted mask 

 

 
 

(c)    ResNet50_Upernet 

 

 
 

     (d)    UNet (ResNet18 encoder) 

 

Figure 6: Comparing the binary masks predicted by 

(c) ResNet50_Upernet and (d) U-Net to the ground 

truth masks. 

 

As for the function loss, dice loss is a suitable loss 

function that can be used to optimize the model 

weights, for reasons (discussed above) like handling 

class imbalance, similarity measure, robustness, 

gradient behavior. 

 

 As seen in Table 1 below, the models are compared 

based on mIoU scores (mean IoU) and the number 

of parameters (M = million). 

TABLE I.  MODEL COMPARISON 

S.N

o 
Model Name mIou 

Nu

m 

Par

ams 

Pixel 

accuracy 

(%) 

1 
ResNet18_P

PM 
0.62 24M 64.5 

2 
ResNet50_U

pernet 
0.57 64M 54.4 

3 HrnetV2 0.71 66M 78.3 

4 

Unet 

(ResNet18 

encoder) 

0.83 14M 85.1 

 

 

7. Conclusion 

This study showcases the effectiveness of deep 

learning models in accurately estimating building 

areas from satellite imagery in urban environments. 

Among the evaluated models, the UNet model with 

ResNet18 encoder emerges as the most suitable, 

achieving an impressive mean Intersection over 

Union (mIoU) score of 0.83. 

The findings of this study contribute to the 

advancement of building area estimation techniques 

using deep learning. By leveraging multi-scale 

contextual information, high-resolution feature 

maps, and skip connections, significant 

improvements in accuracy have been achieved. 

Particularly, the UNet model with ResNet18 

encoder demonstrates great potential for accurate 

and efficient building area estimation in urban areas. 

 

These insights have practical implications for urban 

planners and policymakers, providing them with a 

reliable method for assessing building areas using 

satellite imagery. Accurate building area estimation 

plays a crucial role in addressing the challenges of 

urbanization and facilitating sustainable 

development. The outcome of this study offers 

valuable guidance for decision-making processes 

related to urban planning and resource allocation. 

This study underscores the effectiveness of deep 

learning models for building area estimation from 
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satellite imagery. The identified UNet model with 

ResNet18 encoder stands out for its superior 

performance, with the potential to contribute to the 

progress in this field and providing actionable 

insights for urban planners and policymakers. 
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