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Abstract 

This paper presents a criteria for the existence and uniqueness of solutions to two-point boundary value 

problems associated with a system of Kronecker product first order differential equation. Some of the 

natural questions on Kronecker product of matrices about seemingly“simple” cases are still unansweredin 

spite of their increasing interest and hence some significant results on Kronecker product of matrices are 

answered in this paper. We mainly explain a set of necessary and sufficient conditions on the 

decomposition of a matrix into Kronecker product of two matrices. 
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Introduction 

1. In recent years difference equations ariseas a natural description of observed evolution phenomena and 

found many applications to Science and Engineering problems [1-5]. For this reason, we continue our 

attention to 

 

𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛) + 𝑓(𝑛)  (1.1) 

 

𝑀1𝑥(𝑛0) + 𝑁1𝑥(𝑛𝑓) = 𝛼 

And 

 

   𝑦(𝑛 + 1) = 𝐵(𝑛)𝑦(𝑛) + 𝑔(𝑛)    (1.2) 

𝑀2𝑦(𝑛0) + 𝑁2𝑦(𝑛𝑓) = 𝛽 , 

Where𝐴(𝑛) and 𝐵(𝑛) are square matrices of order (𝑚𝑥𝑚) and (𝑛𝑥𝑛) respectively and all scalars are 

assumed to be real. The above equations can be put in the form 

(𝑥(𝑛 + 1) ⊗ 𝑦(𝑛 + 1)) = [𝐴(𝑛) ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝐵(𝑛)][𝑥(𝑛) ⊗ 𝑦(𝑛)] ,(1.3) 

And the boundary condition matrices can be written as  

(𝑀1 ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝑁1)(𝑥(𝑛) ⊗ 𝑦(𝑛)) + 

(𝑀2 ⊗ 𝐼𝑛 + 𝐼𝑝 ⊗ 𝑁2)(𝑥(𝑛) ⊗ 𝑦(𝑛)) = 𝛼 ⊗ 𝛽 ,  (1.4) 
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where 𝐴 is an (𝑚 × 𝑚) matrix and 𝐵 is (𝑝 × 𝑝) square matrices, 𝑥(𝑛) and 𝑦(𝑛) are column matrices of 

order (𝑚 × 1) and (𝑝 × 1) respectively. Recently Kronecker product of matrices played an important role in 

multi variate analysis and in the construction of fast and practical algorithms to solve system of linear 

equations. These algorithms are very useful in Signal processing, Image Processing, computer vision, 

quantum computingto mention a few. We now mention some of the basic properties of the Kronecker 

product of two matrices. Let 𝐴 = (𝑎𝑖𝑗) be an (𝑚 × 𝑛) matrix and 𝐵 = (𝑏𝑖𝑗) be a (𝑝 × 𝑞) matrix then their 

Kronecker product (𝐴 ⊗ 𝐵) is defined as  

(𝐴 ⊗ 𝐵) = (𝑎𝑖𝑗𝐵)for all 𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, … , 𝑛 

and is in fact an (𝑚𝑝 × 𝑛𝑞) matrix. The kronecker product of matrices defined above has the following 

properties: 

1. (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶 ⊗ 𝐵𝐷) (Provided 𝐴𝐶 and 𝐵𝐷 are defined) 

2. (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇 (𝐴𝑇 stands for transpose of the matrix 𝐴) 

3. (𝐴 + 𝐵) ⊗ 𝐶 = (𝐴 ⊗ 𝐵) + (𝐵 ⊗ 𝐶) 

4. (𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1 (provided 𝐴 and 𝐵 are invertible) 

5. (𝐴 ⊗ 𝐵)(𝑛) = (𝐴(𝑛) ⊗ 𝐵(𝑛)) (For discrete systems) 

(𝐴 ⊗ 𝐵)(𝑛 + 1) = (𝐴(𝑛 + 1) ⊗ 𝐵(𝑛 + 1)) (For discrete systems) 

6. ‖𝐴 ⊗ 𝐵‖ = ‖𝐴‖‖𝐵‖ 

For more information on Kronecker Product of matrices, we refer to a recent contributions of Murty, 

Fausett[8], Divya, Yan Wu, Dileep [12], Y. Wu and  

K. N. Murty [9,10]. For basic results on Kronecker Product of Matrices and Linear Systems we refer to Kasi 

Viswanadh, SriramBhagavatulaet. al [6,7] and Divya et.al in [11]. 

 

(𝑀1 ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝑁1)(𝑥 ⊗ 𝑦)(𝑛0) + (𝑀2 ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝑁2)(𝑥 ⊗ 𝑦)(𝑛𝑓) = (𝛼 ⊗ 𝛽) 

 

Let 𝑋(𝑛, 𝑛0, 𝑒𝑖), 𝑖 = 1,2, … , 𝑚 be 𝑚 linearly independent solutions having 𝑒𝑖 as initial vectors, and let 𝑆 be 

the solution space of 𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛). It may be noted that any element of 𝑆 can be expressed as a 

linear combination of the set of n solutions of  𝑋(𝑛, 𝑛0, 𝑒𝑖)𝑖 = 1,2, … , 𝑚 i.e. if 𝑥(𝑛) is any solution of (1.1) 

with 𝑓(𝑛) = 0, then 

 

  𝑥(𝑛) = ∑ 𝑐𝑖
𝑚
𝑖=1 𝑋(𝑛, 𝑛0, 𝑒𝑖), 𝑖 = 1,2, … , 𝑚 

 

 We define 𝐾 functions 𝑓(𝑛) on 𝑁𝑛0
+  as  

 

  𝐾(𝑛) = [

𝑓1(𝑛) 𝑓2(𝑛) . . . 𝑓𝑚(𝑛)
𝑓1(𝑛 + 1) 𝑓2(𝑛 + 1) . . . 𝑓𝑚(𝑛 + 1)

. . . . . .
𝑓1(𝑛 + 𝑘 − 1) 𝑓2(𝑛 + 𝑘 − 1) . . . 𝑓𝑚(𝑛 + 𝑘 − 1)

] . (1.5) 

 

 If 𝑓𝑖(𝑛), 𝑖 = 1,2, … , 𝑚 are 𝑚 solutions of  

 

  𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛),  

 

then det[𝐾(𝑛)] ≠ 0. If 𝑥(𝑛) is any solution of (1.1) and 𝑥̅(𝑛) be a particular solution  

of(1.5) then any solution of (1.5) can be written as  

 

    𝑥(𝑛) = 𝑥̅(𝑛) + ∑ 𝛼𝑖
𝑚
𝑖=1 𝑋(𝑛, 𝑛0, 𝑒𝑖),𝑖 = 1,2, … , 𝑚. 
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Similarly, if 𝑦(𝑛) is any solution of (1.2) with 𝑔(𝑛) = 0 and 𝑦̅(𝑛) be a particular solution of (1.2), then 

   

    𝑦(𝑛) = 𝑦̅(𝑛) + ∑ 𝛽𝑖
𝑝
𝑖=1 𝑌(𝑛, 𝑛0, 𝑒𝑖), 𝑖 = 1,2, … , 𝑝. 

 We have the following interesting result: 

 Theorem 1.1: 

 If 𝑋(𝑛) is a fundamental solution of the homogeneous difference system  

    𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛) 

and𝑌(𝑛) is fundamental matrix of  

   𝑦(𝑛 + 1) = 𝐵(𝑛)𝑦(𝑛) 

then(𝑋(𝑛) ⊗ 𝑌(𝑛)) is a fundamental matrix of  

(𝑥 ⊗ 𝑦)(𝑛 + 1) = [𝐴(𝑛) ⊗ 𝐵(𝑛)][𝑥(𝑛) ⊗ 𝑦(𝑛)] 

Proof: Now consider 

(𝑋 ⊗ 𝑌)(𝑛 + 1) = 𝑋(𝑛 + 1) ⊗ 𝑌(𝑛 + 1) 

= 𝐴(𝑛)𝑋(𝑛) ⊗ 𝑌(𝑛)𝐵(𝑛) 

= [𝐴(𝑛) ⊗ 𝐵(𝑛)][𝑋(𝑛) ⊗ 𝑌(𝑛)] 

This clearly shows that (𝑥(𝑛) ⊗ 𝑦(𝑛)) is a solution of  

(𝑥(𝑛 + 1) ⊗ 𝑦(𝑛 + 1)) = [𝐴(𝑛) ⊗ 𝐵(𝑛)][𝑥(𝑛) ⊗ 𝑦(𝑛)] 

This paper is organized as follows: 

Section 2 presents the general solution of the Kronecker Product of non-homogeneous difference system. 
(𝑥(𝑛 + 1) ⊗ 𝑦(𝑛 + 1)) = [𝐴(𝑛) ⊗ 𝐵(𝑛)][𝑥(𝑛) ⊗ 𝑦(𝑛)] + (𝑓(𝑛) ⊗ 𝑔(𝑛)), (2.1) and then present the 

general solution of the Kronecker Product boundary value problems. 

Section 3 presents three algorithms when the Kronecker Product boundary value problem has a singular 

characteristic matrix. 

Now, any solution of the non-homogeneous Kronecker Product system (2.1) is of the form 

𝑦(𝑛) = 𝑦̅(𝑛) + [Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)][𝐶1 ⊗ 𝐶2] 

where𝐶1 is a constant 𝑚-vector and 𝐶2 is a constant 𝑝-vector and Φ(𝑛, 𝑛0) is a fundamental matrix of  

𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛) and 𝑦(𝑛) is a particular solution of the system (2.1) and Ψ(𝑛, 𝑛0) is also a 

fundamental matrix of 𝑦(𝑛 + 1) = 𝐵(𝑛)𝑦(𝑛).  

We now verify [Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)] is a solution of the homogeneous system. 

Theorem 2.1: If Φ(𝑛, 𝑛0)is a fundamental matrix of the homogeneous system 
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𝑥(𝑛 + 1) = 𝐴(𝑛)𝑥(𝑛)andΨ(𝑛, 𝑛0) is fundamental matrix of 𝑦(𝑛 + 1) = 𝐵(𝑛)𝑦(𝑛) then 

[Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)] is a fundamental matrix of homogeneous Kronecker product system (2.1) 

Proof: Consider[Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)]. It can be easily seen that 

Φ(𝑛 + 1, 𝑛0) ⊗ Ψ(𝑛 + 1, 𝑛0) = 𝐴(𝑛)Φ(𝑛0) + 𝐵(𝑛)Ψ(𝑛0) 

= [𝐴(𝑛) ⊗ 𝐵(𝑛)][Φ(𝑛0) ⊗ Ψ(𝑛0)] 

     = [𝐴(𝑛) ⊗ 𝐵(𝑛)][𝐶1 ⊗ 𝐶2] 

where𝐶1 = Φ(𝑛0) and 𝐶2 = Ψ(𝑛0). Hence [Φ(𝑛) ⊗ Ψ(𝑛)]is a fundamental matrix of the 

homogeneous Kronecker Product system (2.1) 

Theorem 2.2: A particular solution 𝑦̅(𝑛) of non-homogeneous Kronecker Product system (2.1) is given by 

  𝑦̅(𝑛) = ∑ [Φ(𝑛, 𝑗 + 1) ⊗ Ψ(𝑛, 𝑗 + 1)][𝑓(𝑛) ⊗ 𝑔(𝑛)]𝑛−1
𝑗=𝑛0

 

Proof: Any solution of the homogeneous Kronecker product homogeneous system is of the form 

  [𝑥(𝑛) ⊗ 𝑦(𝑛)] = [Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)][𝐶1 ⊗ 𝐶2] 

where𝐶1 and 𝐶2constant 𝑚 and 𝑝- vectors respectively.But a solution cannot be a solution of the Kronecker 

Product non-homogeneous system unless [𝑓(𝑛) ⊗ 𝑔(𝑛)] = 0. So we seek a particular solution of the 

system (2.1) in the form 

 [𝑥(𝑛) ⊗ 𝑦(𝑛)] = [Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)][𝐶1 ⊗ 𝐶2](𝑛) 

Then  

[𝑥(𝑛 + 1) ⊗ 𝑦(𝑛 + 1)] = [Φ(𝑛 + 1, 𝑛0) ⊗ Ψ(𝑛 + 1, 𝑛0)][𝐶1(𝑛 + 1) ⊗ 𝐶2(𝑛 + 1)] 

Therefore 

[A(n)Φ(𝑛, 𝑛0) ⊗ 𝐵(𝑛)Ψ(𝑛, 𝑛0)][𝐶1(𝑛 + 1) ⊗ 𝐶2(𝑛 + 1)] = 

 A(n)Φ(𝑛, 𝑛0) ⊗ 𝐵(𝑛)Ψ(𝑛, 𝑛0)[𝐶1(𝑛) ⊗ 𝐶2(𝑛)] + [𝑓(𝑛) ⊗ 𝑔(𝑛)] 

Thus 

[A(n)Φ(𝑛, 𝑛0) ⊗ 𝐵(𝑛)Ψ(𝑛, 𝑛0)][𝐶1(𝑛 + 1) − 𝐶1(𝑛) ⊗ 𝐶2(𝑛 + 1) − 𝐶2(𝑛)]

=                                                                                                                                      [𝑓(𝑛)

⊗ 𝑔(𝑛)] 

[A(n)Φ(𝑛, 𝑛0) ⊗ 𝐵(𝑛)Ψ(𝑛, 𝑛0)]∆ 𝐶(𝑛) = [𝑓(𝑛) ⊗ 𝑔(𝑛)] 

∆ 𝐶(𝑛) = [A(n)Φ(𝑛, 𝑛0) ⊗ 𝐵(𝑛)Ψ(𝑛, 𝑛0)]−1[𝑓(𝑛) ⊗ 𝑔(𝑛)] 

Or 

𝐶(𝑛) = 𝐶(𝑛0) + [A(n) ⊗ 𝐵(𝑛)]−1[Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)]−1[𝑓(𝑛) ⊗ 𝑔(𝑛)] 
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𝐶(𝑛) = 𝐶(𝑛0) + [A(n) ⊗ 𝐵(𝑛)]−1 ∑ Φ(𝑛0, 𝑗 + 1) ⊗ ∑ Ψ(𝑛0, 𝑗 + 1)
𝑝−1
𝑗=𝑝0

[𝑓(𝑛) ⊗ 𝑔(𝑛)]𝑛−1
𝑗=𝑛0

 (2.2) 

Note that Φ(𝑛, 𝑛0) = Φ(𝑛)Φ−1(𝑛0) 

 [Φ(𝑛, 𝑛0)]−1 = Φ(𝑛0)Φ−1(𝑛) 

= Φ(𝑛0, 𝑛) 

The above formula is known as Variation of Parameters formula. We also assume that [𝐴(𝑛) ⊗

𝐵(𝑛)] is invertible. Thus any solution [𝑥(𝑛, 𝑛0, 𝐶1) ⊗ 𝑦(𝑛, 𝑛0, 𝐶2)]is given by 

[𝑥(𝑛, 𝑛0, 𝐶1) ⊗ 𝑦(𝑛, 𝑛0, 𝐶2)]

= [Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)][𝐶1 ⊗ 𝐶2](𝑛0)

+ ∑ Φ(𝑛, 𝑛0)Φ(𝑛 − 𝑗 + 1)𝑓𝑗(𝑛) ⊗ ∑ Ψ(𝑛, 𝑛0)Ψ(𝑛 − 𝑗 + 1)

𝑝−1

𝑗=𝑝0

𝑔𝑗(𝑛)

𝑛−1

𝑗=𝑛0

 

 

(2.3) 

Section 3: Two-Point Boundary Value Problems 

In this section, we shall be concerned with the two-point boundary value problem satisfying two-point 

boundary conditions 

 (𝑀1 ⊗ 𝑁1)(𝑦 ⊗ 𝑥)𝑛0 + (𝑀2 ⊗ 𝑁2)(𝑦 ⊗ 𝑥)𝑛𝑓 = (𝛼 ⊗ 𝛽)                         (3.1)   

where𝑛0, 𝑛𝑓 ∈ 𝑁𝑛0
+ , 𝑛0 < 𝑛𝑓. Substituting the general form of the solution given in (2.3) in the boundary 

condition matrix (3.1) we get 

(𝑀1 ⊗ 𝑁1)[Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)] + (𝑀2 ⊗ 𝑁2)[Φ(𝑛, 𝑛0) ⊗ Ψ(𝑛, 𝑛0)][𝐶1 ⊗ 𝐶2](𝑛0)

= (𝛼 ⊗ 𝛽) − [(𝑀1 ⊗ 𝑁1) ∑ Φ(𝑛0, 𝑗 + 1)𝑓𝑗 ⊗ ∑ Ψ(𝑛0, 𝑗 + 1)

𝑝−1

𝑗=𝑝0

𝑔𝑗

𝑛−1

𝑗=𝑛0

] [𝑓 ⊗ 𝑔] 

If we assume that the homogeneous boundary value problems has only the trivial solution, it follows that the 

characteristic matrix 𝐷 given by  

𝐷 = (𝑀1 ⊗ 𝑁1)[Φ(𝑛0, 𝑛0) ⊗ Ψ(𝑛0, 𝑛0)] + (𝑀2 ⊗ 𝑁2)[Φ(𝑛𝑓, 𝑛0) ⊗ Ψ(𝑛𝑓, 𝑛0)] 

is non-singular. Hence 

[𝐶1 ⊗ 𝐶2](𝑛0) = 𝐷−1 [(𝛼 ⊗ 𝛽)

− ∑ (𝑀1 ⊗ 𝑁1)Φ(𝑛0 + 𝑗 + 1) ⊗ Ψ(𝑛0 + 𝑗 + 1)

𝑛−1

𝑗=𝑛0

− ∑ (𝑀2 ⊗ 𝑁2)Φ(𝑛0 + 𝑗 + 1) ⊗ Ψ(𝑛0 + 𝑗 + 1)

𝑝−1

𝑗=𝑝0

] 

 Note that,Φ(𝑛0, 𝑛0) = 𝐼. The right hand side of the system of equations can be written as  
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 𝐷 𝐶 = [𝑓 ⊗ 𝑔](𝑛 − 1) 

 where𝑓 = 𝐷−1[(𝛼 ⊗ 𝛽) − ∑ (𝑀1 ⊗ 𝑁1)Φ(𝑛0 + 𝑗 − 1) ⊗ Ψ(𝑛0 + 𝑗 − 1) − ∑ (𝑀2 ⊗
𝑝−1
𝑗=𝑝0

𝑛−1
𝑗=𝑛0

𝑁2)Φ(𝑛0 + 𝑗 − 1) ⊗ Ψ(𝑛0 + 𝑗 − 1)] 

Now we solve system of equations by using the following algorithms, when D is singular or deficient rank. 

Section 4: Algorithms: 
In this section, we first develop, two new kinds of Kronecker Product decompositions will be developed i.e. 

Kronecker Product general decomposition and KroneckerProduct isomer decomposition. 
 

Theorem 4.1: Let 𝐴 be an(𝑚𝑥𝑚) matrix and 𝐵 be a (𝑝𝑥𝑝) matrix. Then the Kronecker Product 

decomposition for a matrix 𝑀 = (𝐴 ⊗ 𝐵) ∈ 𝑅𝑚𝑝𝑋𝑚𝑝  is given by 

𝑀 = 𝑀𝑖𝑗 ∈ 𝑅𝑚𝑝×𝑛𝑝can be decomposed to the form 𝑀 = (𝐴 ⊗ 𝐵) 

Proof: Let 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑚) ∈ 𝑅𝑚×𝑚 with 𝑎𝑖 ∈ 𝑅𝑚 , 1 ≤ 𝑖 ≤ 𝑚 then denote 𝑉𝑒𝑐𝑡(𝐴) =

(𝑎1
′ , 𝑎2

′ , … , 𝑎𝑚
′ )′ then the matrix 𝑀 = (𝐴 ⊗ 𝐵) if and only if 

𝑟𝑎𝑛𝑘{𝑉𝑒𝑐𝑡𝑜𝑟( 𝑀11), 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑀12), … , 𝑉𝑒𝑐𝑡𝑜𝑟( 𝑀1𝑚), … . , 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑀𝑚𝑚)} = 1 

In general, the Kronecker product decomposition is not unique. 

The following algorithm describes the general program of Kronecker product decomposition. 

Algorithm 1: 

 Step 1: Input M, m, p, the size of the matrix 𝑀 ∈ 𝑅𝑚𝑝×𝑚𝑝 and 𝑀! = 0 

 Step 2: Define 𝑀𝑖𝑗 , 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑝 

 Step 3: Calculate 𝑉𝑒𝑐𝑡(𝑀𝑖𝑗) 

  Step 4: If 𝑟𝑎𝑛𝑘{𝑉𝑒𝑐( 𝑀11), 𝑉𝑒𝑐 (𝑀12), … , 𝑉𝑒𝑐( 𝑀1𝑚), … . , 𝑉𝑒𝑐(𝑀𝑚𝑚)} = 1 

   go to step 5 

   else output “Cannot be decomposed”; end 

  Step 5: look for the first 𝑀𝑖𝑗! = 0, define 𝐵 = 𝑀𝑖𝑗 

  Step 6: Calculate 𝑎𝑖𝑗: 𝑉𝑒𝑐𝑡 (𝑀𝑖𝑗) = 𝑎𝑖𝑗  𝑉𝑒𝑐𝑡(𝐵), 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑝 

  Step 7: Define 𝐴 = (𝑎𝑖𝑗), 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑝; output𝐴, 𝐵; end 

Theorem 4.2: Let 𝐴 be an (𝑚 × 𝑛) matrix with rank 𝑟 and 𝐵 be a (𝑝 × 𝑞) matrix with  

 rank 𝑠. Then  

 𝑟𝑎𝑛𝑘(𝐴 ⊗ 𝐵) = 𝜌(𝐴 ⊗ 𝐵) = 𝜌(𝐴). 𝜌(𝐵)where𝜌 stands for rank of  (. ) 

Proof:  Since the matrix 𝐴 is of rank 𝑟 ≤ min(𝑚, 𝑛), there exist invertible matrices  

𝑃𝐴and𝑄𝐴 such that 
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 𝑃𝐴𝐴𝑄𝐴 = 𝐼𝑟 (𝐼is an 𝑚 × 𝑛 matrix) and similarly 

 𝑃𝐵𝐵𝑄𝐵 = 𝐼𝑠 (𝐼is an 𝑝 × 𝑞 matrix) 

Applying mixed property, we therefore have  

 (𝑃𝐴 ⊗ 𝑃𝐵)(𝐴 ⊗ 𝐵)(𝑄𝐴 ⊗ 𝑄𝐵) = 𝐼𝑟 ⊗ 𝐼𝑠 

Since (𝑃𝐴 ⊗ 𝑃𝐵)and (𝑄𝐴 ⊗ 𝑄𝐵) are invertible matrices, we therefore have  

𝜌(𝐴 ⊗ 𝐵) = 𝜌(𝐼𝑟 ⊗ 𝐼𝑠) 

But the   matrix has precisely 𝑟𝑠-non-zero elements each on a different row and column by 

construction. Therefore   

 𝜌(𝐴 ⊗ 𝐵) = 𝜌(𝐴). 𝜌(𝐵) 

The following algorithm presents the general program for Kronecker product gemel decomposition (KPGD) 

problem that include whether a matrix can be decomposed or not and how to get the results of KPGD.  

Algorithm 2:  

  Step 1: input 𝐷, 𝑝, 𝑞; verify the size of 𝐷 is 𝑝2 × 𝑞2 and 𝑀! = 0 

  Step 2: define 𝑓𝑙𝑎𝑔 = 0, 𝐷𝑖𝑗, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑞 

  Step 3: for (𝑖, 𝑗), 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑞 

   if:𝐷𝑖𝑗 = 0 continue 

   else if: 𝐷𝑖𝑗! = 0and𝐷𝑖𝑗 ≤ 0𝑓𝑙𝑎𝑔 = 1, break; 

   else: define 𝐵 = 𝐷𝑖𝑗/ √𝑚𝑖,𝑗
𝑖𝑗

< 0𝑓𝑙𝑎𝑔 = 2, break; 

  Step 4: if 𝑓𝑙𝑎𝑔 == 2&&𝐷 = 𝐵 ⊗ 𝐵, A=B; output 𝐴, end 

   else output “Cannot  be decomposed”;  end 

Section 5: QR-Factorization 

 Let 𝐴 ∈ 𝑅𝑚×𝑚 and 𝐵 ∈ 𝑅𝑝×𝑝 matrices and let 𝑃𝐴, 𝐿𝐴 and 𝑃𝐵, 𝐿𝐵 be the matrices corresponding to their LU-

factorizations with partial pivoting. Then we can derive LU-factorization to the Kronecker product   

(𝐴 ⊗ 𝐵)as follows: 

   (𝐴 ⊗ 𝐵) = (𝑃𝐴
𝑇𝐿𝐴𝑈𝐴) ⊗ (𝑃𝐵

𝑇𝐿𝐵𝑈𝐵) 

= (𝑃𝐴
𝑇 ⊗ 𝑃𝐵

𝑇)(𝐿𝐴 ⊗ 𝐿𝐵)(𝑈𝐴 ⊗ 𝑈𝐵) 

If 𝐴 and 𝐵 are positive (semi) definite and 𝐿𝐴, 𝐿𝐵 be the matrices corresponding to their Cholesky 

factorizations. Then Cholesky factorization of their Kronecker product as  
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   (𝐴 ⊗ 𝐵) = (𝐿𝐴𝐿𝐴
𝑇) ⊗ (𝐿𝐵𝐿𝐵

𝑇 ) 

= (𝐿𝐴 ⊗ 𝐿𝐵)(𝐿𝐴
𝑇 ⊗ 𝐿𝐵

𝑇 ) 

     = (𝐿𝐴 ⊗ 𝐿𝐵)(𝐿𝐴 ⊗ 𝐿𝐵)𝑇 

 It may be noted that  

    (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇 

 Proof: (𝐴 ⊗ 𝐵) =
1

2
[𝑄(𝐴 ⊗ 𝐵) + (𝐵 ⊗ 𝐴)𝑄𝑇]𝑇 

    =
1

2
[𝑄(𝐴 ⊗ 𝐵)𝑇 + (𝐵 ⊗ 𝐴)𝑇𝑄𝑇] 

    =
1

2
[𝑄(𝐴𝑇 ⊗ 𝐵𝑇 + 𝐵𝑇 ⊗ 𝐴𝑇)𝑄𝑇] 

    = 𝐴𝑇 ⊗ 𝐵𝑇 

Result 5.1: Let 𝐴 be an (𝑚 × 𝑛) given matrix with rank 𝑠 ≤ 𝑚𝑖𝑛{𝑚, 𝑛}. Then there  

 exists a unique factorization of the form 

   𝐴𝑃 = 𝑄𝑅 

  with the following properties. 

(i) 𝑃 is an (𝑛 × 𝑛) permutation matrix with first 𝑛 columns of 𝐴𝑃 form a basis of  

𝐼𝑚 (𝐴) = {𝐴𝑥 ∈ 𝑅𝑚/𝑥 ∈ 𝑅𝑛} 

(ii) 𝑄 is an (𝑚 × 𝑠) matrix with orthonormal columns and 𝑅 is an (𝑠 × 𝑛) upper trapezoidal 

matrix of the form 

𝑅 = (𝑅1, 𝑅2)where𝑅1 is a non-singular (𝑠 × 𝑠) upper triangular matrix with orthonormal 

columns and 𝑅2 is a (𝑠, 𝑛 − 𝑠) matrix. Note that columns of A are linearly independent. Then 

the system of equation 

   𝐴𝑥 = 𝛼      (5.1) 

has a unique solution given by 

𝑥 = (𝐴𝑇𝐴)−1𝛼 

Note that (𝐴𝑇𝐴) is (𝑛 × 𝑛)non-singular matrix. Similarly if the rows of 𝐴 are linearly independent, then  

 𝐴𝑥 = 𝛼 

 

and 𝑥 = 𝐴𝑇𝑦 transforms into 

  

  𝐴𝐴𝑇𝑦 = 𝛼 , 

  and𝑦 = (𝐴𝐴𝑇)−1𝛼 

Or 

 𝑥 = 𝐴𝑇𝑦 = 𝐴𝑇(𝐴𝐴𝑇)−1𝛼is the unique solution of the system of equations (5.1). We make use of 

these results to establish our result on Kronecker product of linear system of equations 

 



Sriram Bhagavathula, IJECS Volume 11 Issue 01January, 2022 Page No.25473-25482 Page 25481 

   (𝐴 ⊗ 𝐵)(𝑥 ⊗ 𝑦) = (𝛼 ⊗ 𝛽) .   (5.2) 

 

Suppose 𝐴 is an(𝑚 × 𝑚) matrix with full rank and 𝐵 is (𝑝 × 𝑝) matrix with full rank. Suppose 𝐴 and 𝐵 are 

QR-decomposed as  

 

𝐴𝑃1 = 𝑄1𝑅1and𝐵𝑃2 = 𝑄2𝑅2 i.e. 

 

  𝐴𝑃1 = 𝑄1 [𝑅(1)

0
]and𝐵𝑃2 = 𝑄2 [𝑅(2)

0
] 

where𝑄1 and 𝑄2 are orthonormal matrices and 𝑅(1), 𝑅(2) are square upper triangular matrices and 𝑅1, 𝑅2 are 

upper triangular matrices. 𝑂(1), 𝑂(2) are Zero matrices of appropriate order. 𝑃1and𝑃2 are permutation 

matrices arise from column pivoting used to keep the diagonal elements as far as away from zero as 

possible. If we introduce the partitioning of orthogonal matrices 𝑄1 and 𝑄2 in the form 

 

𝑄1 = [𝑄1
(1)

𝑄2
(1)]and 𝑄2 = [𝑄1

(2)
𝑄2

(2)], then the system of equation can be back solved to obtain the 

general solution of the Kronecker product system of equations as in [3,4,6]. 
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