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1. Introduction: 

   Existence and uniqueness of solutions to initial value problems have a long mathematical history going 

back to Picards. The mere fact that f is continuous on R ensures existence of at least one solution to the 

initial value problem 

𝑦1 = 𝑓(𝑡, 𝑦), 𝑦(𝑡0 ) = 𝑦0                             (1.1) 

on R. The situation is different for boundary value problems. Length of interval estimates are necessary to 

prove existence and uniqueness of  ( 1.1). If 𝑓 satisfies a lipschitz condition in the second variable, then (1.1) 

has a unique solution. The situation is different for first – order difference system.. 

𝑦𝑛+1 = 𝐴(𝑛)𝑦𝑛 + 𝑓𝑛 ,    𝑦(𝑛0) = 𝑦0 ,              (1.2) 

 

where A is an 𝑝 x 𝑝 continuous matrix, whose elements 𝑎𝑖𝑗(𝑛)   are all real or complex valued functions 

defined on 𝑁𝑛0
+  and 𝑦𝑛 𝜖 𝑅𝑝(𝐶𝑝)  with components 𝑦1(𝑛), 𝑦2 (𝑛),………𝑦𝑝 (𝑛) ,defined on  𝑁𝑛0

+  . The 

corresponding homogeneous equation corresponding to (1.2) is 

𝑦𝑛+1 = 𝐴(𝑛)𝑦𝑛 ,    𝑦(𝑛0) = 𝑦0             (1.3) 

(1.3)  possess a unique solution on  𝑁𝑛0
+  as can easily be seen by induction. 
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 This paper presents a criteria for the existence and unicity of solutions to the three point boundary values 

problems associated with first order matrix difference systems. 

𝑦𝑛+1 = 𝐴(𝑛)𝑦𝑛 + 𝑓𝑛                                                        (1.4)        

𝑀𝑦𝑛0
+  𝑁𝑦𝑛𝑚

+  𝑅𝑦(𝑛𝑓) =  𝛼,                               (1.5) 

where M , N and R constant matrices of order (m x 𝑝) and y is a (𝑝 x 1) vector and 𝛼 is a constant (𝑝 x 1) 

vector. The corresponding homogeneous boundary value problems 

𝑦𝑛+1 = 𝐴(𝑛)𝑦𝑛                                           (1.6)           

𝑀𝑦𝑛0
+  𝑁𝑦𝑛𝑚

+  𝑅𝑦(𝑛𝑓) =  0.                (1.7)                 

Throughout this paper we assume that 𝑒1, 𝑒2, …………𝑒𝑑   be standard base vectors in 𝑅𝑑 and   𝑦(𝑛, 𝑛0, 𝑒𝑖 ) 

i=1,2,…,d be a linearly independent solutions having   𝑒𝑖(𝑖 = 1,2,… , 𝑑)  as standard base vectors. Let S be 

the solution space of (1.5). It may be noted that any element of S can be expressed as a linear combination of 

the set of n linearly independent solutions of 

𝑦(𝑛, 𝑛0, 𝑒𝑖), 𝑖 = 1,2, … . . , 𝑝 𝑖𝑓 𝑍(𝑛)𝑖𝑠 𝑎𝑛𝑦 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (1.5) 𝑡ℎ𝑒𝑛 

   𝑍(𝑛)=∑ 𝑐𝑖
𝑝
𝑖=1 𝑦(𝑛, 𝑛0, 𝑒𝑖) 𝑖 = 1,2, … . , 𝑝 

We define Wronskian of functions  𝑦𝑖(𝑛),𝑛 = 1,2,… . , 𝑝 on  𝑁𝑛0
+  as 

 W (𝑛 ) =  

[
 
 
 
 
 
 
 

𝑦1(𝑛) 𝑦2(𝑛)⋯ 𝑦𝑝(𝑛)

𝑦1(𝑛 + 1)       𝑦2(𝑛 + 1)⋯      𝑦𝑝(𝑛 + 1)
… . ⋯ … .

𝑦1(𝑛 + 𝑝 − 1) 𝑦2(𝑛 + 𝑝 − 1)⋯ 𝑦𝑝(𝑛 + 𝑝 − 1)

        

]
 
 
 
 
 
 
 

 

Note that | 𝑊 (𝑛)| ≠ 0 for all  𝑛 𝜖 𝑁𝑛0
+  If  𝑦𝑖(𝑛), 𝑖 = 1,2, … . , 𝑝  be p linearly independent solution  of (1.5) , 

then |𝑊(𝑛)| ≠ 0 for all 𝑛 ≠ 𝑛0 if 𝑦(𝑛) is any solution of (1.4) and 𝑦 ̅(𝑛) is a particular solution of (1.4) 

then 𝑦(𝑛) − 𝑦 ̅(𝑛) is a solution of (1.5) and any solution 𝑦(𝑛) of (1.1) is given by 

   𝑦(𝑛) = 𝑦 ̅(𝑛) + ∑ 𝛼𝑖
𝑝
𝑖=1 𝑦(𝑛, 𝑛0, 𝑒𝑖)  

In the year 2009, Murty, Balaram, Viswanadh [6] established existence and uniqueness of kroneck product 

initial value problems by using tensor based harness of the shortest vector problem . Further, Murty, Yan 

Wu  and Viswanadh Kanuri [3] established that Metrics that suit for Dichotomy, Well conditioning and 

object oriented design, on measure chains. Charyulu, Anand and Deekshitilu[12] established controllability , 

observability criteria on fuzzy matrix discrete dynamical systems. Further Kasi Viswanadh and Murty [5] 

established existence and uniqueness criteria for three point boundary value problems using shortest and 

closest lattice vector methods. In the year 2020, Kasi Viswanadh [4] established existence of 𝜓𝛼bounded 

solutions of linear fuzzy differential equation. We make use of these results to establish existence and 

uniqueness criteria for the fuzzy first order difference system. 

𝑦𝛼 (𝑛 + 1) = 𝐴(𝑛)𝑦𝑛
𝛼  + 𝑓(𝑛),         (1.8 ) 

satisfying boundary conditions 
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𝑀𝑦𝛼 (𝑛   
0
) +  𝑁𝑦𝛼 (𝑛𝑚) +  𝑅𝑦𝛼 (𝑛𝑓)  = 𝛼.    (1.9) 

By using modified QR-algorithm we develop QR-algorithm for fuzzy linear systems. Section 2 presents 

preliminary results on fuzzy differential discrete systems and establishes main result by using modified QR-

algorithm for fuzzy linear systems. These are results in fact generalize all existing results on linear systems 

and includes them as a particular case. The algorithm we present is a centrally crucial problems and is 

helpful in solving many least square problems in numerical linear algebra. 

2) Preliminaries: 

We present in this section some of the basic results and definitions on fuzzy systems. The family of all non-

empty compact convex subsets of 𝑅𝑑is denoted by 𝑃𝑘(𝑅
𝑑 ).If 𝛼, 𝛽𝜖 𝑅 and 𝐴, 𝐵 𝜖 𝑃𝑘(𝑅

𝑑 ), we define  

𝛼(𝐴 + 𝐵) =  𝛼𝐴 + 𝛼𝐵, 𝛼(𝛽𝐴) = (𝛼𝛽)𝐴 𝑎𝑛𝑑 1. 𝐴 = 𝐴 

If 𝛼, 𝛽 > 0 , 𝑡ℎ𝑒𝑛 (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴.  Let T = [a,b] be a compact subinterval of  R. we have the 

following : 

Definition 2.1: 

 Let 𝐸𝑛 = { 𝑢 𝜖 𝑅𝑑 → [0,1]}, 𝑢𝜖𝐸𝑛  is called a fuzzy number, if it satisfies the following axioms  

i) u is normal , that is there exists an 𝑥0𝜖𝑅
𝑑 such that 𝑢(𝑥0) = 1 

ii)  u is fuzzy convex , that is for any 𝑥, 𝑦, 𝜖𝑅𝑑    and 

 0 < 𝜆 < 1, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦)𝜖𝑅𝑑  

iii)  u is upper semi continuous 

iv)  𝑢0 = 𝑐𝑙{ 𝑥𝜖𝑅𝑑  / 𝑢(𝑥) ≥ 0}  is compact . 

For 𝛼𝜖[0,1]  the 𝛼 − level  set {𝑢}𝛼𝜖𝑃𝑘(𝑅𝑑). 

Definition 2.1(fuzzy set) . Let X be a non-empty set. A fuzzy set A in X characterized by its membership 

function 𝐴: 𝑋 → [0,1] and 𝐴(𝑥)is interpreted as the degree of membership of elements of  𝑥 in every fuzzy 

set A to each 𝑥𝜖𝑋 

The value of zero is used to represent complete non-membership, the value of one is used to represent 

complete membership and the values  is between 0 and 1 are used to represent intermediate degrees of 

membership. 

Example 2.1: The membership function of the fuzzy set of real numbers close to one is defined as 𝐴(𝑥) =

 𝑒−𝛽(𝑥−1)2 , 𝑤ℎ𝑒𝑟𝑒 𝛽 > 0 

Example 2.2: Let the member ship functions for the set of real real numbers aloes to zero is defined 

as𝐵(𝑥) =
1

1+𝑥3 

Using this function , we can determine the membership grade of real number in the fuzzy set , which 

signifies the degree to which that membership is close to zero. For instance the number 1 a grade of 0.5 and 

the number zero is a grade of 1. Mostly the results available in literature are of zero number and is of grade 

one only. 

Definition 2.2: A map 𝑓: [0,1] → 𝐸𝑑  is strongly measurable if for all 𝛼𝜖[0,1] the multivalued map  

𝑓𝛼: [0,1] → 𝑃𝑘(𝑅
𝑑)   is defined as 𝑓𝛼(𝑡) = [𝑓(𝑡)]𝛼 
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is Lebesgue measurable , when 𝑃𝑘(𝑅𝑑)  is endowed with the topology by the Hausdorff metric d. 

Theorem 2.1  if 𝑢 𝜖 𝑃𝑘(𝑅
𝑑) , then  

(1) [𝑢]𝛼 𝜖  𝑃𝑘 (𝑁𝑛0
+ ) for all 𝛼 𝜖 [0,1] 

(2) 𝑖𝑓 [𝑢]𝛼2 <  [𝑢]𝛼1  for all 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 1 

(3)  if {𝛼𝑘} is a non decreasing sequence converging to 𝛼 > 0, then [𝑢]𝛼 = 𝑛[𝑢]𝛼𝑘  

conversely  , if {𝐴𝛼: 0 ≤ 𝛼 ≤ 1} and [𝑢]0 = 𝑢0 and 𝐴𝛼  ⊂  𝐴0  

 

Definition 2.3: we define 𝐷: 𝐸𝑑  ×  𝐸𝑑 → 𝑅+ 𝑢{0} by 𝐷(𝑢, 𝑣) = 𝑠𝑢𝑝0≤𝛼≤1 𝑑𝐻{[u]α, [v]α }  where 𝑑𝐻 is the 

Hausdorff metric defined in 𝑃𝑘(𝑅
𝑑) For any 𝑢, 𝑣 , 𝑤 𝜖 𝑃𝑘(𝑅

𝑑) and  𝜆𝜖 𝑅,  we have 

(1) 𝐷(𝑢 + 𝑤, 𝑣 + 𝑤) = 𝐷(𝑢, 𝑣) 

(2) 𝐷(𝜆𝑢, 𝜆𝑣) = |𝜆|𝐷(𝑢, 𝑣) and  

(3) 𝐷(𝑢, 𝑣) = 𝐷(𝑢,𝑤) +  𝐷(𝑤, 𝑣) 

Definition 2.4:  Let 𝑓: 𝑇 → 𝐸𝑑 for 𝑡0 𝜖 𝑅 ,  we say that f is differentiable at 𝑡0 (Hausdorff differentiable) if 

there exists an element  𝑓′(𝑡0)𝜖𝑅
𝑑such that for all , the ℎ > 0  the H-difference  𝑓(𝑡0 +  ℎ) − 𝑓(𝑡0) and 

𝐹(𝑡0) − 𝐹(𝑡0 − ℎ) exists and the limit ( in the metric) 

lim
ℎ→0+

𝐹(𝑡0 + ℎ) − 𝐹(𝑡0)

ℎ
  𝑎𝑛𝑑 lim

ℎ→0+

𝐹(𝑡0) − 𝐹(𝑡0 − ℎ)

ℎ
 

are all exists and each equal to 𝑓′(𝑡0),. At the end points we only take one sided derivative. 

We now turn our attention to the existence and uniqueness of three point boundary value problems when the 

characteristic matrix D is non – invertible. Let 𝑦𝛼(𝑛0, 𝑛0 , 𝑒𝑖), 𝑖 = 1,2,…… . 𝛼) be the n-linearly independent 

solutions of (1.7)  having 𝑒𝑖 as its initial  base vector . Then any solution of (1.7) is of the form 

𝑦(𝑛) = ∑ 𝜑−𝛼

𝑑−1

𝑛=𝑛0

(𝑛, 𝑗 + 1)𝑓𝑗 + 𝜑−𝛼(𝑛 , 𝑛0)𝐶              (2.1) 

where c is an constant n vector. Now substituting the general form of solution (2.1) in the boundary 

condition matrix(1.8) 

We get 

[𝑀 𝜑−𝛼(𝑛, 𝑛0) + 𝑁𝜑−𝛼(𝑛𝑚 , 𝑛0) + 𝑅𝜑−𝛼(𝑛𝑓 , 𝑛0)𝐶] = 

𝛼 − [∑𝑀 ∑ 𝜑−𝛼(𝑛0, 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗 + 𝑁 ∑ 𝜑−𝛼(𝑛𝑚 , 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗 + 𝑅 ∑ 𝜑−𝛼(𝑛𝑓, 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗] . 

We assume that for each 𝛼𝜖[0,1], the characteristic  matrix 𝐷𝛼 defined by 

𝐷𝛼 = 𝑀 𝜑𝛼(𝑛, 𝑛0) + 𝑁𝜑𝛼(𝑛𝑚 , 𝑛0) + 𝑅𝜑𝛼(𝑛𝑓, 𝑛0)  is non-singular (here we assume that M,N and R are 

constant square matrices). In a way we are assuming that the homogeneous boundary value problem (with 

𝑓 = 0 𝑎𝑛𝑑 𝛼 = 0) has only the trivial solution . In this case 

𝐶𝑛0
= 𝐷𝛼−1

[𝛼 − [∑𝑀 ∑ 𝜑−𝛼(𝑛0, 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗 + 𝑁 ∑ 𝜑−𝛼(𝑛𝑚 , 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗 + 𝑅 ∑ 𝜑−𝛼(𝑛𝑛0
, 𝑗 +𝑑−1

𝑗=𝑑0

1)𝑓𝑗]] 
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Note that  𝜑(𝑛0, 𝑛0) = 𝜑(𝑛0)𝜑
−1(𝑛0) = 𝐼 If 𝐷𝛼 is non singular for each𝛼 𝜖 [0,1] , (2.2) determines the 

unique solution of the boundary value problem. If 𝐷𝛼 is singular then, we can only determine best least 

square solution of the three point boundary value problem. In this case using (1.9), we get a system of 

equations 𝐷𝛼𝐶 = 𝑓 where  

𝑓 = 𝐷𝛼−1
[𝛼 − [∑𝑀 ∑ 𝜑(𝑛0, 𝑗 + 1)𝑑−1

𝑗=𝑑0
𝑓𝑗 + 𝑁 ∑ 𝜑(𝑛𝑚 , 𝑗 + 1)𝑑−1

𝑗=𝑑0
𝑓𝑗 + 𝑅 ∑ 𝜑(𝑛𝑛0

, 𝑗 + 1)𝑑−1
𝑗=𝑑0

𝑓𝑗]] 

We solve the system of equation (2.3) by using modified QR-algorithm. 

3.The Least squares problem : 

The least squares (1.5) problem is one of the central problems in numerical linear algebra. Suppose we have 

a system of equations of the form 𝐷𝛼𝐶 = 𝑓 

Where 𝐷𝛼  𝜖 𝑅𝑚×𝑛 , 𝑎𝑛𝑑 𝑚 > 𝑛 meaning R is long and thin matrix and  𝑓𝜖𝑅𝑚×1. We wish to find C for any 

fixed 𝛼𝜖[0,1] such that  𝐷𝛼𝐶 = 𝑓. In general, we can never expect to find a solution  C such that  𝐷𝛼𝐶 ≈ 𝑓. 

Formally (Ls) problem can be defined as  

arg𝑚𝑖𝑛𝑐||𝐷
𝛼𝐶 − 𝑓||2 

Let Q be an orthogonal matrix and 𝑄𝛼  𝜖 𝑅𝑚×𝑚 . For each 𝛼𝜖[0,1] then Q does not change the norm of a 

vector . If we rotate or reflect a vector, then the vectors length won’t change. Consider why 

||𝑄𝛼𝑦||
2

2
= (𝑄𝛼𝑦)𝑇(𝑄𝛼𝑦) =  𝑦𝑇(𝑄𝛼)𝑇( 𝑄𝛼𝑦) =  𝑦𝑇𝑦 = ||𝑦||

2

2
 

With this idea is min  , consider now an orthogonal matrix can be used for an LS problem. 

= 𝑚𝑖𝑛𝑐||𝐷
𝛼𝐶 − 𝑓||2 

= 𝑚𝑖𝑛𝑐||(𝑄
𝛼)𝑇(𝐷𝛼𝐶 − 𝑓)||2 

= 𝑚𝑖𝑛𝑐||(𝑄
𝛼)𝑇(𝑄𝑅𝛼𝐶 − 𝑓)||2 

= 𝑚𝑖𝑛𝑐||(𝑅
𝛼𝐶 − 𝑄𝑇𝑓)||2 

Our goal is to find a Q such that 𝑄𝛼 . 𝐷𝛼  =  𝑄𝛼 . 𝑅𝛼  𝑤ℎ𝑒𝑟𝑒 𝑅𝛼    is upper triangular for each 𝛼 𝜖 [0,1]. QR 

factorization for solving least square problems 

 In fact QR  - decomposition exists for any matrix . Given a matrix our  goal is to find two matrices 𝑄𝛼 . 𝑅𝛼  

such that Q is orthogonal and  𝑅𝛼 is upper triangular. Here 𝐷𝛼  is a 𝑚 × 𝑝 matrix and hence  

𝐷𝛼 = 𝑄𝛼 [𝑅
𝛼

0
] =  [𝑄1

𝛼 𝑄2
𝛼]  [

𝑅𝛼

0
] 

Note that the matrix   𝑅𝛼  will be always square say 𝑝 × 𝑝 

 Consider 𝐷𝛼𝐶 = 𝑓                                     (3.2) 

If  𝐷𝛼  is an 𝑚 × 𝑝 matrix with columns linearly independent then 

(𝐷𝛼𝑇𝐷𝛼)𝐶 = 𝐷𝛼𝑓 for each 𝛼 𝜖 [0,1] 

Now (𝐷𝛼𝑇𝐷𝛼) is a square matrix of order 𝑝  and hence 𝐶 = (𝐷𝛼𝑇𝐷𝛼)
−1

𝐷𝛼𝑓 



N.Swapna, IJECS Volume 10 Issue 1 January, 2021 Page No.25275-25283 Page 25280 

 Thus , using the (QR) decomposition yields a better least square estimate then the normal equations in terms 

of solution quality . In case 𝐷𝛼  is a 𝑚 × 𝑝 matrix with rows of 𝐷𝛼  are linearly independent, then the 

transformation  𝐶 = (𝐷𝛼𝑇)
𝑦
gives 

(𝐷𝛼𝐷𝛼𝑇  𝑦) = 𝐷𝛼𝑓 

𝑦 = (𝐷𝛼𝐷𝛼𝑇  )
−1

𝐷𝛼𝑓 

Since 𝐶 = 𝐷𝛼𝑇𝑦 ,  We have 𝑦 = 𝐷𝛼𝑇(𝐷𝛼𝐷𝛼𝑇  )
−1

𝐷𝛼𝑓 is the unique solution. 

Rank-Deficient Least –square problems: 

When 𝐷𝛼 is a square matrix of order 𝑝 × 𝑝, we use least squares algorithm under the assumption 𝐷𝛼 is not 

of full rank. If it is of full rank then the solution of 𝐷𝛼𝐶 = 𝑓  can be determined uniquely. We can use 

suitable choices the first one is SVD(singular value decomposition)  or its cheaper approximations 𝑄𝛼𝑅𝛼 

with column pivoting. If matrix 𝐷𝛼 for each 𝛼 𝜖 [0,1] is rank deficient, then it is no longer the case that 

space spanned by the columns of  ∗ 𝑄𝛼 ∗  is the same space spanned by columns of ∗ 𝐴 ∗  i.e., 

 𝑠𝑝𝑎𝑛 𝐷1
𝛼 , 𝐷2

𝛼, ……… . . , 𝐷𝑝 
𝛼  ≅ 𝑠𝑝𝑎𝑛 𝑞1

𝛼, 𝑞2
𝛼, ……… . . , 𝑞𝑝 

𝛼   

𝑸𝜶𝑹𝜶 application: The generalized minimum residual (GMRES) algorithm will be presented for solving 

very large , sparse linear systems of equations by using  𝑄𝛼𝑅𝛼 decomposition. This decomposition is well 

known and was in-fact proposed by Saad and Shultz in 1986[]. We make use of this method for developing   

𝑄𝛼𝑅𝛼  algorithm to solve our problems in boundary value problems in boundary value problem.. Let 

𝐷(𝛼) ≔ 𝐷 𝑎𝑛𝑑 𝑄(𝛼): 𝑄 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛼𝜖[0,1] 

Def: 𝐴𝑟𝑛𝑜𝑙𝑑 𝑖_𝑠𝑖𝑛𝑔𝑙𝑒_𝑖𝑡𝑒𝑟(𝐷, 𝑄,𝐾): 

𝑄 = 𝐷. 𝑑𝑜𝑡(𝑄[: 𝑘]) 

ℎ = 𝑚 𝑝. 𝑧𝑒𝑟𝑜𝑠(𝐾+) 

𝐹𝑜𝑟 𝑖 𝑖𝑛(𝑘 + 1): 

ℎ(𝑖)𝑞. 𝑇. 𝑑𝑜𝑡(𝑄𝑓[; , 𝑖]) 

𝑞 = ℎ[𝑖] ∗  𝑄[; , 𝑖] 

ℎ(𝑘 +) = 𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑞𝛼) 

𝑞/= ℎ[𝑘 + 1] 

Return h,q 

Def gmres(𝐷𝐶, 𝑥,max _𝑖𝑡𝑒𝑟𝑠): 

EPSILON = 

n ,_= D. Shape 

assert (𝐷𝛼 , 𝑠ℎ𝑎𝑝𝑒[𝜃] = 𝐷𝛼. 𝑠ℎ𝑎𝑝𝑒[: ]) 

𝑟 =  𝑓 − 𝐷𝛼 . 𝑑𝑜𝑡(𝐶𝛼) 
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𝑞𝛼 = 𝑚.𝑝. 𝑧𝑒𝑟𝑜𝑠((𝑚, max _𝑖𝑡𝑒𝑟𝑠) 

𝑄[: , 𝜃] =  𝑞. 𝑠𝑞𝑢𝑒𝑒𝑧𝑒( ) 

𝑏𝑒𝑡𝑎 = 𝑚. 𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔 . 𝑛𝑜𝑟𝑚(𝑟) 

𝐶 𝑖 = 𝑛. 𝑝 𝑧𝑒𝑟𝑜𝑠 ( (𝑛, 1)) 

𝐶 𝑖[𝜃] =: ≠ 𝑒 − 1𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑎𝑠𝑖𝑠 𝑣𝑒𝑐𝑡𝑜𝑟, 

𝐻 = 𝑚𝑝. 𝑧𝑒𝑟𝑜𝑠((𝑛 + 1, 𝑛)) 

𝐹 = 𝑚𝑝(𝑧𝑒𝑟𝑜𝑠(max _𝑖𝑡𝑒𝑟𝑠, 𝑛, 𝑛)) 

for i in range (max_iters): 

𝐹(𝑖) = 𝑚𝑝. 𝑒𝑦𝑒(𝑛) 

for k in range (max_iters -1) : 

𝐻[: 𝑘 + 2, 𝑘], 𝑄𝛼[: 𝑘 + 1] = 𝑎𝑟ℎ𝑜𝑙𝑑 𝑖 − 𝑠𝑖𝑛𝑔𝑙𝑒_𝑖𝑡𝑒𝑟(𝐷, 𝑄, 𝑘) 

≠ 𝑑𝑜𝑛′𝑡𝑛𝑒𝑒𝑑 𝑡𝑜 𝑡ℎ𝑖𝑠 𝑓𝑜𝑟 ∅, … . , 𝑚  since completed previously 

𝑐, 𝑠 = 𝑔𝑖𝑣𝑒𝑛 𝑐𝑜𝑒𝑓𝑓𝑠(𝐻[𝑘, 𝑘], 𝐻[𝑘 + 1, 𝑘]) 

𝐹[𝑘, 𝑘, 𝑘] = 𝑐 

𝐹[𝑘, 𝑘, 𝑘 + 1] = 𝑠 

𝐹[𝑘, 𝑘 + 1, 𝑘] = −𝑠 

𝐹[𝑘, 𝑘 + 1, 𝑘 + 1] = 𝑐 

≠ 𝑎𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒  

𝐻[: 𝑘 + 2, 𝑘] = 𝐹[𝑘: 𝑘 + 2: 𝑘 + 2]. 𝑑𝑜𝑡[𝐻: 𝑘 + 2, 𝑘] 

𝑐𝑖 = 𝐹[𝑘]. 𝑑𝑜𝑡(𝑋𝑖) 

If  𝑏𝑒𝑡𝑎 = 𝑚. 𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔 . 𝑛𝑜𝑟𝑚(𝐶𝑖[𝑘 + 1] < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 

STOP 

≠ 𝑤ℎ𝑒𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 , 𝑠𝑜𝑙𝑣𝑒 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

≠ y must be (k,1) 

𝑦;  −, −, − = 𝑛𝑝𝑙𝑖𝑛𝑎𝑙𝑔. 𝑙𝑠𝑡𝑠𝑞(𝐻[: 𝑘 + 1], 

≠ 0 𝑘 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑚, 𝑘)𝐶𝑖[: 𝑘 + 1] 

𝐶 − 𝑘 = 𝐶 + 𝑄[; , ; 𝑘 + 1]. 𝑑𝑜𝑡(𝑦) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝐶 − 𝑘 

Def  given_coeffs(a,b) 
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𝑐 = 𝑎|𝑛𝑝. 𝑠𝑞𝑟𝑡(𝑎∗∗2 + 𝑏∗∗2) 

𝑠 = 𝑏|𝑛𝑝. 𝑠𝑞𝑟𝑡(𝑎∗∗2 + 𝑏∗∗2) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐, 𝑠 

Def Arnold i(D, f, k): 

𝑛 = 𝐷. 𝑠ℎ𝑎𝑝𝑒[∅] 

𝐻 = 𝑚𝑝. 𝑧𝑒𝑟𝑜𝑠(𝑘, 𝑘) 

𝑄 = 𝑚𝑝. 𝑧𝑒𝑟𝑜𝑠(𝑚, 𝑘) 

≠ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

≠ 𝑢𝑠𝑒 𝑖𝑡 𝑎𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑘𝑟𝑦𝑙𝑜𝑣 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑄[: 𝜃] = 𝑏|𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑓) 

𝑓𝑜𝑟 𝑗 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝑘 − 1): 

𝑄[: , 𝑗 + 1] = 𝑎. 𝑑𝑜𝑡(𝑄[: , 𝑗]) 

𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 (𝑗): 

𝐻[𝑖, 𝑗] = 𝑄[: , 𝑗 + 1]. 𝑑𝑜𝑡(𝑄[: , 𝑗]) 

𝑄[: , 𝑗 + 1] = 𝑄[: , 𝑗 + 1] − 𝐻[𝑖, 𝑗] ∗ 𝑄[: ,1] 

𝐻[𝑗 + 1, 𝑗] = 𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑄[: , 𝑗 + 1]) 

𝑄[: , 𝑗 + 1]/= 𝐻[𝑗 + 1, 𝑗] 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑄, 𝐻 
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