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1. Introduction     

In this paper, we shall be concerned with the Sylvester system of first order linear differential non-

homogeneous equation and establish a necessary and sufficient condition for the existence of (Φ,Ψ)bounded 

solutions and deduce the results of Lyapunov systems as a particular case. We establish variation of parameters 

formula and use it as a tool to establish our main results. Sylvester system of first order linear non-

homogeneous equation is an interesting area of current research and the general form of its solution in two 

fundamental matrices is only established by Murty and Prasad in the year of 1989 [9]. The paper attracted 

many eminent mathematicians like Richard Bellman, Don Fausett, Lakshmikantham to mention a few.  Recent 

results established by Viswanadh, V. Kanuri, et. al., is the main motivation behind our results. The concept of 

Ψ-bounded solutions for linear system of differential equations is due to T. G. Halam [14]. The variation of 

parameters formula we established is new and will have significant contributions on control engineering 

problems.  The novel idea adopted by Viswanadh, Wu and Murty [8] on the existence of (Φ⊗Ψ)bounded 

solutions and on the existence of Ψ-bounded solutions by Kasi Viswanadh, V. Kanuri, et. al. [4-7,11,12,13] 

on time scale dynamical systems is a useful and significant contribution to the theory and differential and 

difference equations.  Further these ideas have been extended by Kasi Viswanadh V. Kanuri to fuzzy 

differential equations in a novel concept, and is very interesting and useful contribution to the theory of 

differential equations and also in applications to control systems. The results established on stability, 

controllability criteria established on state scale dynamical systems on first order linear systems [9] can be 

generalized to (Φ,Ψ)bounded solutions to Sylvester linear system of differential equations. This paper is 

organized as follows: section 2 presents a criterion for the existence of Φ-bounded solution of the matrix linear 

system 𝑇′ = 𝐴𝑇and Ψ-bounded solution of the linear system 𝑇′ = 𝐵∗𝑇(where * refers to the transpose of the 

complex conjugate).  By super imposing these two solutions, we establish the general solution of the linear 

matrix Sylvester system 

                                                       𝑇′ = 𝐴(𝑡)𝑇 + 𝑇𝐵(𝑡)                                                         (1.1)                                                       

where T is a square matrix of order (n ×n) and 𝐴(𝑡), 𝐵(𝑡)are also n ×n matrices.  We present our basic results 

that are available in literature [4, 5, 6, 7, 8, 10, 11]. Our main results are established in section 3. This section 

also presents criteria for the Sylvester system (1.1) to be stable, asymptotically stable, and establishing the 

result on controllability.  Throughout this paper, 𝑌(𝑡) stands for a fundamental matrix solution of the linear 

system 
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                                                              𝑇′ = 𝐴(𝑡)𝑇                                                                (1.2)                                                             

and 𝑍(𝑡)stands for a fundamental matrix solution of the linear system 

                                                            𝑇′ = 𝐵∗𝑇.                                                                  (1.3)                                                                 

2. Preliminaries     

In this section, we shall be concerned with establishing general solution of the Sylvester linear system and 

present Φ𝑌-bounded solution of the linear system (1.2) and then Ψ𝑍-bounded solution of the system (1.3). 

Theorem 2.1 T is a solution of (1.1) if and only if 𝑇 = 𝑌𝐶𝑍∗, where C is a constant square matrix and Y is a 

fundamental matrix solution of (1.2) and Z is a fundamental matrix solution of (1.3). 

Proof: It can easily be verified that T defined by 𝑌𝐶𝑍∗ is a solution of (1.1).  For 

𝑇′ = 𝑌′𝐶𝑍∗ + 𝑌𝐶𝑍∗′ = 𝐴(𝑡)𝑌𝐶𝑍∗ + 𝑌𝐶𝑍∗𝐵 = 𝐴𝑇 + 𝑇𝐵. 

Hence, 𝑌𝐶𝑍∗ is a solution of (1.1). Now, to prove that every solution is of this form, let T be a solution, and 

K be a matrix defined by 𝐾 = 𝑌−1𝑇. Then, 𝑌′𝐾 + 𝑌𝐾′ = 𝐴𝑌𝐾 + 𝑌𝐾𝐵* or 𝑌𝐾′ = 𝑌𝐾𝐵* or 𝐾′ = 𝐾𝐵* or K*’ 

= BK*. Since 𝑍is a fundamental matrix solution of (1.3), it follows that there exists a constant square matrix 

C such that 𝐾∗ = 𝑍𝐶∗or 𝐾 = 𝐶𝑍∗. Since 𝑇 = 𝑌𝐾 = 𝑌𝐶𝑍∗.                       

In [4], Kasi Viswanadh, V. Kanuri, et. al. presented a novel concept on Ψ-bounded solutions of linear 

differential systems on time scales. We use these ideas as a tool to establish (Φ,Ψ)bounded solutions of the 

Sylvester system (2.1). If B is replaced by A*, we get Lyapunov system. In this case the general solution is 

given by YCY*. 

Definition 2.1 A function 𝑌:ℝ+ → ℝ𝑛
2
is said to be Φ-bounded solution onℝ if Φ𝑌 is bounded on ℝ. 

Definition 2.2 A function 𝑍:ℝ+ → ℝ𝑛
2
 is said to be Ψ-bounded solution onℝ if 𝑍∗Ψ∗

is bounded on ℝ. 

Definition 2.3 A function 𝑌:ℝ+ → ℝ𝑛
2
 is said to be Φ-Lebesgue integrable on ℝ+if 𝑌(𝑡)is measurable and 

Φ(𝑡)𝑌(𝑡) is Lebesgue integrable on ℝ+. 

Definition 2.4 A function 𝑍:ℝ+ → ℝ𝑛
2
 is said to be Ψ-Lebesgue integrable on ℝ+if 𝑍∗(𝑡)is measurable and 

𝑍∗(𝑡)Ψ∗(𝑡) is Lebesgue integrable on ℝ+. 

Let Φ𝑖:ℝ
+ → ℝ𝑛, 𝑖 = 1,2, . . . , 𝑛, be continuous and let Φ(𝑡) = (Φ1(𝑡), Φ2(𝑡), . . . , Φ𝑛(𝑡))be linearly 

independent so that Φis invertible and also we assumeΨis invertible. 

By a solution of the linear system (1.1), we mean 𝑌(𝑡)𝐶𝑍∗(𝑡), which is an absolutely continuous function and 

satisfies (1.1) for almost all 𝑡 ≥ 0. 

Let 𝑌be a fundamental matrix solution of (1.2) satisfying 𝑌(0) = 𝐼𝑛 and 𝑍be a fundamental matrix solution 

of (1.3) satisfying𝑍(0) = 𝐼𝑛.  Let 𝑋1denote the subspace of ℝ𝑛consisting of all vectors whose values are of 

Φ-bounded solutions of (1.2) for 𝑡 = 0and 𝑋2be the arbitrary fixed subspace of ℝ𝑛 supplementary to𝑋1. 

Further, let 𝑃 1be the projection matrix of ℝ𝑛onto 𝑋1 (𝑃 1
2 = 𝑃 1 and 𝑃 1: ℝ

𝑛 → ℝ𝑛) and let 𝑃 2 = 𝐼 − 𝑃 1be the 

projection matrix on 𝑋2 

Definition 2.5 A function 𝑓: ℝ → ℝ𝑛×𝑛 is said to be Φ-bounded on ℝif Φ(𝑡)𝑓(𝑡) is bounded on ℝ, i.e. 

sup
𝑡∈ℝ

‖Φ(𝑡)𝑓(𝑡)‖ < ∞. 

Definition 2.6 A matrix 𝑌:ℝ → ℝ𝑛×𝑛 is said to be Φ-bounded on ℝif the matrix Φ(𝑡)𝑌(𝑡) is bounded on ℝ, 

i.e. there exists an 𝑀 > 0 such that sup
𝑡∈R

‖Φ(𝑡)𝑌(𝑡)‖ ≤ 𝑀 

Definition 2.7 A matrix 𝑌:ℝ → ℝ𝑛×𝑛 is said to be Φ-integrable on ℝ component-wise if Φ(𝑡)𝑌(𝑡) is 

integrable on ℝ, i.e. ∫ ‖𝛷(𝑡)𝑌(𝑡)‖𝑑𝑡 < ∞
∞

0
.  

Definition 2.8 A matrix function (Φ,Ψ): ℝ → ℝ𝑛
2× 𝑛2is said to be (Φ,Ψ)-bounded if the matrix 

 ||Φ𝑌𝑍∗Ψ∗|| is bounded on ℝ.   
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3. Main results     

In this section, we shall be concerned with the existence of (Φ,Ψ)-bounded solution of the linear Sylvester 

system (1.1), and then present the stability and asymptotic stability of the Sylvester system. 

Theorem 3.1 Let A and B be (𝑛 × 𝑛) continuous square matrices on ℝ.  Then, the system (1.1) has at least 

one (Φ,Ψ)-bounded solution on ℝ for every continuous (Φ,Ψ)-bounded function if  and only if there exists 

a positive constant K such that  

∫ ‖Φ(𝑡)𝑌(𝑡)𝑃𝑍∗(𝑡)Ψ∗(𝑡)‖
∞

−∞
≤ 𝐾 for all 𝑡 ≥ 0                            (3.1) 

where 𝑃 = 𝑃− on (−∞, 𝑡),𝑃 = 𝑃0 + 𝑃+ on (𝑡, 0),𝑃 = 𝑃+ on (0,∞), 𝑃 = 𝑃− on (−∞, 0), 𝑃 = 𝑃0 + 𝑃− on 

(0, 𝑡), 𝑃 = 𝑃+ on (𝑡, ∞). 

Proof: First, suppose the linear Sylvester system has at least one (Φ,Ψ)-bounded solution on ℝ for every 

continuous (Φ,Ψ)-bounded function on ℝ.  Then, it is claimed that there exists a constant 𝐾 > 0 such that 

the inequality (3.1) holds. Let B be the Banach space of all (Φ,Ψ)-bounded continuous functions 𝑇:ℝ →

ℝ𝑛
2
with norm ‖𝑇‖B = sup

𝑡∈ℝ
‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑇(𝑡)‖, we define 

(i) C: the Banach space of all (Φ,Ψ)-bounded continuous functions 𝑇:ℝ → ℝ𝑛
2
with norm 

‖𝑇‖𝐶 = sup
𝑡∈ℝ

‖𝛷(𝑡)𝑌(𝑡)𝑍∗(𝑡)𝛹∗(𝑡)‖ 

(ii) B: the Banach space of all (Φ,Ψ) −△ integrable functions 𝑇:ℝ → ℝ𝑛
2
with norm 

 

     ||T||B = ∫ ‖𝛷(𝑡)𝑌(𝑡)𝑍∗(𝑡)𝛹∗(𝑡)‖𝑑𝑡
∞

−∞
 

(iii) D: the set of all continuous function 𝑇:ℝ → ℝ𝑛
2
which are absolutely continuous on all intervals 𝐽 ⊂ ℝ, 

(Φ,Ψ)-bounded on ℝ, 𝑇(0) ∈ 𝑋−⊗𝑋+, and 𝑻′ = 𝑨𝑻 + 𝑻𝑩 ∈ B.  

Step 1: We first claim that (𝐷, ‖ ‖𝐷)is a Banach space. For, we first note that (𝐷, ‖ ‖𝐷) is a vector space.  

Let {𝑇𝑛}𝑛∈ℕbe a fundamental sequence in B.  Then, there exists a continuous (Φ,Ψ)-bounded function on ℝ 

such that 

lim
𝑛→∞

Φ𝑛(𝑡)𝑇𝑛(𝑡)Ψ𝑛
∗(𝑡)𝑇𝑛

∗(𝑡) = Φ(𝑡)𝑇(𝑡)Ψ∗(𝑡)𝑇∗(𝑡) 

Uniformly onℝ.  From the inequality 

‖𝑇𝑛(𝑡) − 𝑇(𝑡)‖ ≤ ‖𝛷−1(𝑡)‖{‖𝛷(𝑡)𝛹∗(𝑡)𝛹∗
−1
(𝑡)‖‖𝛹∗(𝑡)‖− ‖𝛷−1(𝑡)‖‖𝛷(𝑡)𝑇(𝑡)𝛹∗(𝑡)‖‖𝛹∗−1(𝑡)‖} 

Hence, lim
𝑛→∞

𝑇𝑛(𝑡) = 𝑇(𝑡) uniformly on every compact subset of ℝ.  Thus,𝑇(0) ∈ 𝑋−⊗𝑋+. Thus, (𝐷, ‖ ‖𝐷) 

is a Banach space. 

We now establish variation of parameters formula for the non-homogeneous Sylvester system 

𝑇′ = 𝐴(𝑡)𝑇 + 𝑇𝐵(𝑡) + 𝐹(𝑡)                                                   (3.2) 

where 𝐹(𝑡)is a given (𝑛 × 𝑛) square matrix. Let T be any solution of (3.2) and 𝑇be a particular solution of 

(3.2).  Then 𝑇 − 𝑇is a solution of the homogenous system (1.1).  Any solution of the homogeneous system is 

of the form 𝑇(𝑡) = 𝑌(𝑡)𝐶𝑍∗(𝑡), where 𝑌(𝑡) is a fundamental matrix solution of (1.2) and 𝑍(𝑡)is a 

fundamental matrix of (1.3).  Such a solution cannot be a solution of (3.1) unless𝐹(𝑡) = 0. 

We seek a particular solution of (3.1) in the form 

𝑇(𝑡) = 𝑌(𝑡)𝐶(𝑡)𝑍∗(𝑡) 

and see that 𝑇(𝑡)is a particular solution of (3.1).  Now, 

𝑇
′
(𝑡) = 𝑌′(𝑡)𝐶(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶′(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶(𝑡)𝑍∗

′
(𝑡) 

           = 𝐴(𝑡)𝑌(𝑡)𝐶(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶′(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶(𝑡)𝑍∗𝐵 
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Now on substitution in the eqn (3.1) gives  

𝐴(𝑡)𝑌(𝑡)𝐶(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶′(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶(𝑡)𝑍∗𝐵

= 𝐴(𝑡)𝑌(𝑡)𝐶(𝑡)𝑍∗(𝑡) + 𝑌(𝑡)𝐶(𝑡)𝑍∗(𝑡)𝐵(𝑡) + 𝐹(𝑡)
 

which gives  𝑌(𝑡)𝐶′(𝑡)𝑍∗(𝑡) = 𝐹(𝑡), then 𝐶′(𝑡) = 𝑌−1(𝑡)𝐹(𝑡)𝑍∗
−1
(𝑡), or 

𝐶(𝑡) = ∫ 𝑌−1(𝑠)𝐹(𝑠)𝑍∗
−1
(𝑠)

𝑡

𝑎

 𝑑𝑠 

and hence,  𝑇(𝑡) = 𝑌(𝑡)∫ 𝑌
−1(𝑠)𝐹(𝑠)𝑍∗

−1
(𝑠)

𝑡

𝑎
 𝑑𝑠 𝑍∗(𝑡).  Now, it can easily be verified that 𝑇(𝑡)is a 

solution of (3.2), and the general solution is given by 

𝑇(𝑡) = 𝑌(𝑡)𝐶𝑍∗(𝑡) + 𝑇(𝑡) = 𝑌(𝑡)𝐶𝑍∗(𝑡) + 𝑌(𝑡) ∫ 𝑌−1(𝑠)𝐹(𝑠)𝑍∗
−1
(𝑠)

𝑡

𝑎
 𝑑𝑠 𝑍∗(𝑡). 

We now claim that three exists a constant 𝐾0 > 0 such that for every 𝐹 ∈ B  and for corresponding solution 

of 𝑇 ∈ 𝐷 of (3.2), we have 

sup
𝑡∈ℝ

‖Φ(𝑡)𝑇(𝑡)Ψ∗(𝑡)‖ ≤ 𝐾0sup
𝑡∈ℝ

‖Φ(𝑡)𝐹(𝑡)Ψ∗(𝑡)‖ 

or  

sup
𝑡∈ℝ

max
1≤𝑖≤𝑛

‖Φ𝑖(𝑡)𝑇𝑖(𝑡)Ψ𝑖
∗(𝑡)‖ ≤ 𝐾0sup

𝑡∈ℝ
max
1≤𝑖≤𝑛

‖Φ𝑖(𝑡)𝐹𝑖(𝑡)Ψ𝑖
∗(𝑡)‖ 

or  

sup
𝑡∈ℝ

max
1≤𝑖≤𝑛
1≤𝑗≤𝑛

‖Φ𝑖𝑗(𝑡)𝑇𝑖𝑗(𝑡)Ψ𝑖𝑗
∗(𝑡)‖ ≤ 𝐾0sup

𝑡∈ℝ
max
1≤𝑖≤𝑛
1≤𝑗≤𝑛

‖Φ𝑖𝑗(𝑡)𝐹𝑖𝑗(𝑡)Ψ𝑖𝑗
∗(𝑡)‖               (3.3) 

For, define the mapping 𝑅: 𝐷 → 𝐵as 𝑅𝑇 = 𝑇′ − 𝐴𝑇 − 𝑇𝐵.  Clearly, R is linear and bounded with ‖𝑅‖ ≤ 1.  

Let 𝑅𝑇 = 0, and the fact T satisfies the differential equation 

      𝑇′ = 𝐴𝑇 + 𝑇𝐵 and hence 𝑇 ∈ 𝐵.  This shows that T is (Φ,Ψ)-bounded onℝ of the system (1.1).  Then 

𝑇(0) ∈ 𝑋0 ∩ (𝑋−⊕𝑋+) = {0}. 

Thus, 𝑇 = 0so that R is one-to-one.  To prove that R is “onto”, for any 𝐹 ∈ B, let T be a (Φ,Ψ)-bounded 

onℝof the system (1.1) and T  be the solution of the Cauchy problem 

𝑇′ = 𝐴(𝑡)𝑇 + 𝑇𝐵(𝑡) + 𝐹(𝑡)    

satisfying 𝑇(0) = (𝑃− + 𝑃+)𝑇(0).  Then, 𝑈 = 𝑅 − 𝑇 is a solution of the system (3.2) with 𝑈(0) = 𝑅(0) −
(𝑃− + 𝑃+)𝑇(0).  Thus, 𝑈 ∈ 𝐷and 𝑅𝑇 = 𝐹.  Consequently, the mapping R is a bounded, one-to-one linear 

operator from one Banach space 𝐵to another Banach space B .  Hence, 𝑅−1exists and bounded, where 

‖𝑅−1𝐹‖
𝐵
≤ ‖𝑅−1‖‖𝐹‖𝐵 for all 𝐹 ∈ B   

It follows that  

‖𝑅−1𝐹‖ = (‖𝑅−1‖− 1) ‖𝐹‖ ≤ 𝐾0‖𝐹‖𝐵 

where𝐾0 = ‖𝑅−1‖− 1, which is equivalent to (3.3). 

Let 𝜃1and 𝜃2be any fixed real numbers such that 𝜃1 < 0 < 𝜃2 and 𝐹:ℝ → ℝ𝑛
2
be a function in B   which 

vanishes on (−∞, 𝜃1] ∪ [𝜃2, ∞). Then it is easy to see that the function 𝑇:ℝ → ℝ𝑛
2
 defined as  

 



 

SriRam Bhagavatula, IJECS Volume 09 Issue 11 November, 2020 Page No. 25252-25259      Page 25256 

𝑇(𝑡) =

{
 
 
 
 
 
 

 
 
 
 
 
 
− ∫

0

𝜃1

𝜙(𝑡)𝑃0𝜙
−1(𝜎(𝑠))𝑓(𝑠)𝑑𝑠 − ∫

𝜃2

𝜃1

𝜙(𝑡)𝑃+𝜙
−1(𝜎(𝑠))𝑓(𝑠)Δ𝑠, 𝑡 < 𝜃1

− ∫

𝑡

𝜃1

𝜙(𝑡)𝑃−𝜙
−1(𝜎(𝑠))𝑓(𝑠)Δ𝑠 +∫

𝑡

0

𝜙(𝑡)𝑃0𝜙
−1(𝜎(𝑠))𝑓(𝑠)Δ𝑠

− ∫

𝜃2

𝜃1

𝜙(𝑡)𝑃−𝜙
−1(𝜎(𝑠))𝑓(𝑠)Δ𝑠, , 𝜃1 ≤ 𝑡 ≤ 𝜃2

∫

𝜃2

0

𝜙(𝑡)𝑃+𝜙
−1(𝜎(𝑠))𝑓(𝑠)Δ𝑠, 𝑡 > 𝜃2

 

 

  is the solution in D of the system (1.1). Now if we put 

 

𝐺(𝑡, 𝑠) =

{
 
 
 

 
 
 Φ(𝑡)Ψ

∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠), 𝑠 ≤ 0 < 𝑡

Φ(𝑡)Ψ∗(𝑡)(𝑃0 + 𝑃+)Ψ
∗−1(𝑠)Φ−1(𝑠), 0 < 𝑠 < 𝑡

−Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠), 0 < 𝑡 ≤ 𝑠

Φ(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠), 𝑠 < 𝑡 ≤ 0

−Φ(𝑡)Ψ∗(𝑡)(𝑃0 + 𝑃+)Ψ
∗−1(𝑠)Φ−1(𝑠), 𝑡 ≤ 𝑠 < 0

−Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠), 𝑡 ≤ 0 ≤ 𝑠

. 

Then, G is continuous on ℝ𝑛
2
 at all points except at 𝑡 = 𝑠, and at 𝑡 = 𝑠G has a jump discontinuity of unit-

magnitude (In).  Then, we have  

𝑇(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2

𝜃1
 for 𝑡 ∈ ℝ. 

Indeed, for 𝜃1 > 𝑡, we have  

∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2

𝜃1

= −∫ Φ(𝑡)Ψ∗(𝑡)(𝑃0+ 𝑃+)Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

0

𝜃1

− 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2
0

. 

Rewrite the second integral as ∫ . . . 𝑑𝑠 +
𝜃1
0 ∫ . . . 𝑑𝑠

𝜃2
𝜃1

, we get 

∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2

𝜃1

= −∫ Φ(𝑡)Ψ∗(𝑡)𝑃0Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

0

𝜃1

− 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2
𝜃1

= 𝑇(𝑡). 

 

For 𝑡 ∈ [𝜃1, 0), we have 

 

∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2

𝜃1

= −∫ Φ(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝑡

𝜃1

− 
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∫ Φ(𝑡)Ψ∗(𝑡)(𝑃0+ 𝑃+)Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠−

0

𝑡
 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2
0

= 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝑡

𝜃1
+ 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃0Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠−

𝑡

0
 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃1Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2
𝑡

= 𝑇(𝑡). 

For 𝑡 ∈ (0, 𝜃2), we have 

∫ 𝐺(𝑡,𝑠)𝐹(𝑠)𝑑𝑠
𝜃2

𝜃1

= ∫ Φ(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

0

𝜃1

+ 

∫ Φ(𝑡)Ψ∗(𝑡)(𝑃0 +𝑃−)Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠−

𝑡

0
 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2

𝑡
= 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝑡

𝜃1

+ 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃0Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠−

𝑡

0
 

∫ Φ(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)Φ−1(𝑠)𝐹(𝑠)𝑑𝑠

𝜃2
𝑡

= 𝑇(𝑡). 

For 𝑡 > 𝜃2, we can easily show that  ∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2
𝜃1

= 𝑇(𝑡).  Therefore,  

sup
𝑡∈ℝ

‖Φ(𝑡)Ψ∗(𝑡)∫ 𝐺(𝑡, 𝑠)𝐹(𝑠)𝑑𝑠
𝜃2
𝜃1

‖ ≤ 𝐾 ∫ ‖Φ(𝑡)Ψ∗(𝑡)𝐹(𝑡)‖𝑑𝑡
𝜃2
𝜃1

   

 

for all 𝑡 ∈ ℝ.  Hence, 

‖Φ(𝑡)Ψ∗(𝑡)𝐺(𝑡, 𝑠)Ψ∗−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾  for all 𝑡 ∈ ℝ.   

Now, to prove the converse statement, suppose the fundamental matrices of 𝑌and 𝑍of (1.2) and (1.3) satisfy 

the condition (3.1) for some 𝐾 > 0.  Let 𝐹:ℝ → ℝ𝑛
2
be a Lebesgue (Φ,Ψ)-delta integrable function onℝ.  We 

consider the function 𝑈:ℝ → ℝ𝑛
2
defined by 

𝑈(𝑡) = ∫ Φ(𝑡)Ψ∗(𝑡)Ψ∗−1(𝑠)Φ−1(𝑠)𝑇(𝑠)𝑑𝑠
∞

−∞

+ 

∫ Φ(𝑡)Ψ∗(𝑡)Ψ∗−1(𝑠)Φ−1(𝑠)𝑇(𝑠)𝑑𝑠−
𝑡

0
 

∫ Φ(𝑡)Ψ∗(𝑡)Ψ∗−1(𝑠)Φ−1(𝑠)𝑇(𝑠)𝑑𝑠
∞

𝑡
.                                          (3.3) 

Then, the function is well defined onℝ, and  

‖Φ(𝑡)Ψ∗(𝑡)𝑈(𝑡)‖ ≤ 𝐾∫ ‖Φ(𝑠)Ψ∗(𝑠)𝑇(𝑠)‖𝑑𝑠
∞

−∞
, 

which shows that U is (Φ,Ψ)-bounded onℝ.  Hence the proof is complete.                               
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Theorem 3.2: If the homogeneous Sylvester system (1.1) has no non-trivial (Φ,Ψ)-bounded solution onℝ, 

then (1.1) has a unique (Φ,Ψ)-bounded solution onℝ for every Lebesgue (Φ,Ψ)-integrable function𝐹:ℝ →

ℝ𝑛
2
if and only there exists a 𝐾 > 0 such that  

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 𝑠 for −∞ < 𝑠 < 𝑡 < ∞ 

and 

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 𝑡 for −∞ < 𝑡 < 𝑠 < ∞ 

The proof follows by taking 𝑃0 = 0in Theorem 3.1. 

Theorem 3.3: Suppose that a fundamental matrix 𝑌(𝑡)of 𝑇′ = 𝐴𝑇and a fundamental matrix 𝑍(𝑡)of 𝑇′ =
𝐵∗𝑇satisfy the conditions: 

(i) ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for  𝑡 > 0, 𝑠 ≤ 0      

     ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)(𝑃0+ 𝑃−)Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for 𝑡 > 0, 𝑠 > 0, 𝑠 < 𝑡 

     ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for 𝑡 > 0, 𝑠 > 0, 𝑠 > 𝑡 

     ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃−Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for 𝑡 ≤ 0, 𝑠 < 𝑡 

     ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)(𝑃0+ 𝑃−)Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for 𝑡 ≤ 0, 𝑠 > 𝑡, 𝑠 < 0 

     ‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃+Ψ
∗−1(𝑠)𝑍∗

−1
(𝑠)𝑌−1(𝑠)Φ−1(𝑠)‖ ≤ 𝐾 for 𝑡 ≤ 0, 𝑠 > 0, 𝑠 ≥ 𝑡 

(ii) lim
𝑡→∞

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃0‖ = 0 

      lim
𝑡→∞

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃1‖ = 0 

      lim
𝑡→∞

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑃−‖ = 0 

and 

(iii) the function 𝐹:ℝ → ℝ𝑛
2
is Lebesgue-delta integrable onℝ. 

Then, every (Φ,Ψ)-bounded solution T of (1.1) is such that 

lim
𝑡→±∞

‖Φ(𝑡)𝑌(𝑡)𝑍∗(𝑡)Ψ∗(𝑡)𝑇(𝑡)‖ = 0. 

The proof is similar to that of the Theorem 3.3 in [4]. 
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