
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 9 Issue 05 May 2020, Page No. 25039-25046

ISSN: 2319-7242 DOI: 10.18535/ijecs/v9i05.4488

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25039

Legal Document Summarization Using Nlp and Ml Techniques
1
Rahul C Kore

*
,

2
Prachi Ray,

3
Priyanka Lade,

4
Amit Nerurkar

1,2,3,4
Vidyalankar Institute of Technology, Mumbai University, Mumbai, India

Abstract:

Reading legal documents are tedious and sometimes it requires domain knowledge related to that document. It

is hard to read the full legal document without missing the key important sentences. With increasing number of

legal documents it would be convenient to get the essential information from the document without having to go

through the whole document. The purpose of this study is to understand a large legal document within a short

duration of time. Summarization gives flexibility and convenience to the reader. Using vector representation of

words, text ranking algorithms, similarity techniques, this study gives a way to produce the highest ranked

sentences. Summarization produces the result in such a way that it covers the most vital information of the

document in a concise manner. The paper proposes how the different natural language processing concepts can

be used to produce the desired result and give readers the relief from going through the whole complex

document. This study definitively presents the steps that are required to achieve the aim and elaborates all the

algorithms used at each and every step in the process.

Keywords: Natural Language Processing, Word Embeddings, Page Rank Algorithm, Text Rank Algorithm.

1. Introduction

Document Summarization is one of those

applications of natural language processing which

is definitely going to have a great impact on

everyone’s lives. Nowadays who has the time to go

through the entire document and understand the

purpose of the same. The human summarization is

the process of taking a document, understanding it,

interpreting it and finally generating a new

document as a summary, but this can be a time

consuming process. So comes the concept of

automatic text summarization. Automatic

Summarization is the process of shortening a large

document computationally to create a summary that

represents the most important and relevant

information within the original content or

document. There are two general approaches to

automatic summarization which are extractive

summarization and abstractive summarization.

In extractive summarization, the sentences are

extracted from the original document but the

extracted sentences are not modified in any way.

Abstractive summarization constructs an internal

semantic representation for the original sentences

and then use this particular representation to obtain

a summary that is closer to how a human being

might express. Abstractive summarization is

computationally much more complex and

challenging than extractive summarization, It

requires both natural language processing and a

deep understanding of the domain of the original

document. Most of the existing methods uses

statistical methods such as frequency of occurrence,

inverse document frequency or linguistic

information such as term distribution, sentence

position to extract the most relevant sentences from

the document.

However these methods ignore the relationship

between different granularity information such as

the relationships between the sentences. Hence the

proposed system takes into consideration the

similarities between different sentences before

calculating the ranks of individual sentences in the

document. Many researches are ongoing in the field

of document summarization because text

summarization becomes different and unique

problem for each domain of research.

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25041

2. Background and Related Work

This part of the paper illustrates different work

carried out by others in areas which are relevant to

our research. The sub-parts below are the most

important key areas in our study.

2.1 Semantic Similarity Measures

There are various applications of text similarity

measures [2] which includes automatic text

summarization, relevance feedback classification,

automatic evaluation of machine translation and

determining text coherence. There are various

approaches which are used to calculate the

similarity measure which are based on statistical

methods, vector representation of words in the

given document, string or corpus based approach

and hybrid similarity measures. Some applications

like TF-IDF uses inverse document frequency for

calculating the frequencies of terms where it does

not take into consideration the surrounding context

amongst that term in the text. The mapping in such

method is simply done using count and probabilistic

measures.

Our study proposes a method in which we first

convert all the words present inside the document

into it’s equivalent vector from by using an

appropriate word embedding model which takes

into consideration the semantic value of each word,

where each word is located in an n-dimensional

(n=10 or 20) space. All the words with similar

semantics are placed closer to each other in this

space. After converting the words in the vector form

we use vector similarity measure to calculate the

likeness. In this way, we also consider the semantic

of all the terms present in the document which gives

a better result.

2.2 Keyword Extraction

The smallest unit to express the core meaning of a

document is known as a keyword [3]. By extracting

several keywords from a document to summarize

document theme content, helps users to quickly

understand whether the document is of their interest

or not. Keyword extraction can be classified in two

categories which are supervised and unsupervised.

In supervised we have two different methods which

are Two classification problem and Multiple

classification problem. In unsupervised we have

three different methods which are word frequency,

Model based and Graph methods.

Supervised methods are those which requires

human intervention whereas Unsupervised methods

are without human intervention which extracts

keywords directly through the information of the

text which in turn improves the efficiency greatly.

In unsupervised methods, the word graph model

treats the document as a network composed of

words which is based on the theory of PageRank

link analysis to calculate the importance of words.

Similarity and co-occurrence frequency between

words are used as the weight for extracting

keywords and Word2vec is used to calculate the

close degree between the words. Word2vec makes

use of deep learning to map each word into a vector

of k-dimension.

2.3 Graph Based Ranking Algorithm

Using graph based ranking algorithm [1], we can

find the importance of a vertex present within the

graph based on the information which are drawn

from the graph structure. In this section, a graph

based algorithm-HITS which were previously found

to be useful on a large range of documents is

presented. This graph based ranking algorithm

(HITS) can be used for unidirectional or weighted

graphs.

HITS(Hyperlink-Induced Topic Search) [1] is a link

analysis algorithm that ranks web nodes/pages. It

estimates two types of values for a page which are

hubs and authorities. Authority estimates the value

of content of the page whereas hub estimates the

value of its links to the other pages. HITS is an

iterative algorithm based on linkage of documents

like PageRank. The algorithm performs a series of

iterations which consists of the following two steps:

• Authority update

• Hub update

The above two score for a node is calculated

using the following algorithm:

• Start

• Initialize hub score and authority score to 1

for each node.

• Update authority score.

• Update hub score.

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25042

• Normalize hub score by dividing each hub

score by square root of the sum of squares of all

the hub scores.

• Normalize authority score by dividing each

authority score by square root of the sum of

squares of all the authority scores.

• Goto step 3 and repeat if necessary.

Formula for calculating authority and hub score:

HITSA (Vi) = ∑ HITSH (Vj)

Vj ЄIn(Vi)

HITSH (Vi) = ∑ HITSA (Vj)

Vj ЄOut(Vi)

3. Proposed System

As stated earlier, the proposed system would be

focusing on generating extractive summary from the

given document using different natural language

processing techniques such as word embedding,

similarity measures, and ranking algorithm.

So before getting into specifications of the proposed

system, let us understand the overall flow of the

system which is given below in the figure.

Figure 1: Flow of the system

The overall flow of the system can be explained

with the help of following steps:

1) Initially we will concatenate all the text present

in the document.

2) Then we would split the text into individual

sentences

This can be done using the tokenizer of the natural

language tool kit package of python.

3) Then we would remove all the punctuations,

numbers and special characters from all the

individual sentences.

This can be achieved with the help of regular

expression and python packages.

4) Then all the alphabets are converted into lower

case alphabets

This is done so there would not be any problem

because of character case sensitivity in the

sentences.

5) Then we would remove all the stop words from

the sentences because stop words do not contribute

any meaningful context to the sentences and would

only waste processing time in the next step of

vector conversion.

After all the above steps we would get clean

sentences which are free from stop words and all

other unwanted punctuations, numbers and special

characters.

6) Now, we will fetch vectors for the constituent

words in a sentence and then take mean/average of

those vectors to obtain a consolidated vector for all

the sentences in the document.

The above step is done using the word embedding

model known as Law2Vec, which was developed

by the Department of Informatics of the University

of Athens.

After the above step we would get vector

representation of all the sentences which would be

carry forwarded in the later steps.

7) Now, we would create an empty similarity matrix

of nxn size where n is the number of sentences

present in the document.

8) Now, we would calculate cosine similarity for all

the sentences present in the document using the

vector representation of the sentences and not the

original sentences.

Right after calculating the similarities between the

sentences using their vector form we would be

inserting all these in the similarity matrix created in

the above steps.

9) After all the above steps, now we would take this

similarity matrix and apply a ranking algorithm on

this similarity matrix obtained in the above step.

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25043

In our case, we would be using page rank algorithm

to calculate the ranking of all the individual

sentences. After ranking all the sentences now we

can display top ranked sentences from the

document.

4. Overview of the System

In this section, we will be focusing more on all the

concepts such as tokenization, stop words

elimination, word embedding, similarity measure,

ranking algorithm which are used in the above

proposed system.

4.1 Dataset

Dataset was downloaded from UCI-Machine

Learning Repository [10]. The downloaded dataset

contains Australian Legal Cases from the Federal

Court of Australia (FCA). It contains almost 4000

Legal cases.

4.2 Tokenization

Tokenization in a defined document unit is basically

the task of chopping up the sentences into pieces,

called tokens, perhaps it also means at the same

time throwing away certain characters, such as

punctuation.

One can think of tokens as words as a token in

sentence, and sentences as tokens in a paragraph.

Below is an example of tokenization:

Input:

Friends Romans Countrymen lend me your ears;

Output:

The above token are more often referred to as terms

or sometimes words.

We would be using sentence tokenizer of natural

language tool kit package of python which is

already trained and thus it very well knows how to

mark the end and the beginning of the sentences at

what characters and at what punctuations.

4.3 Stop Words Elimination

In the below section, we would be discussing on

why stop word elimination is an important step in

natural language processing.

One of the important forms of pre-processing in

natural language processing is to filter out all the

useless data present in the document. In natural

language processing, such useless words that we

filter out in the pre-processing step are referred to as

stop words. So a stop word is a commonly used

word such as “the”. “a”, “an”, “in”, etc which are

always ignored by all the applications using natural

language processing or search engines as a matter of

fact.

We do not want stop words to waste any space

inside the database or increase any processing time

in our application so it is better to eliminate such

words. we can stop words easily as the natural

language tool kit package in python has a list of

stopwords stored in 16 different languages. So we

just need to download the corpus and start

eliminating all the stop words from all the sentences

in the document.

4.4 Word Embedding

In natural language processing, when working with

text, the first thing that we must do is come up with

a strategy to convert strings to numbers or to

vectorize the text before feeding it to any model.

There were many techniques that came before word

embedding to convert strings to text or vectorize the

text but no technique was as good as word

embedding [9]. Two such techniques that came

before word embedding are as follows:

1) One-hot encodings [9]

In this, we might “one-hot” encode each word

present in the vocabulary. To represent each of

these words we would create a zero vector having

length equal to the vocabulary and then we can

place a one in the index that will correspond to the

word. This approach is inefficient because if there

are 1,000 words so to one-hot code each word we

would have to create vector almost all the elements

are zero.

2) Encode each word with a unique number [9].

In this approach we might encode each word with a

unique number. This method is also inefficient

because instead of sparse vector we have a dense

vector where all the elements are full. There are two

downsides to this method, the first one is that the

integer encoding is arbitrary and it does not capture

any relationship between the words, and the second

one is that integer encoding can be challenging for a

model to interpret.

Hence, word embedding [9] is the most efficient

one which gives us a way to use an efficient, dense

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25044

representation in which all the similar words have a

similar encoding and the main part is that we do not

have to specify the encoding by hand. Here an

embedding is a dense vector of floating point

values. And instead of specifying these values

manually we can train these parameters. It is very

much common to see 8-dimensional word

embedding. There are word embeddings with 1024-

dimensions also when we work with very large

datasets. It takes more data to learn but gives very

fine grained relationship between the words. The

graphical representation of word embedding can be

visualized as follows:

Figure 2: Graphical representation of word

embedding

Thus we will be using Law2Vec [8] word

embedding model which was developed by the

department of Informatics of the University of

Athens. This model contains millions of legal words

already trained and are ready to use.\

4.5 Similarity Measure

Similarity measures [2] are used to calculate

similarity between various documents, or different

sentences present inside the document. It defines

how much alike two objects are. It has various

applications in natural language processing such as

in automatic text summarization. It also has its

application in computer vision. It can be used in

many real world applications, one important

application in the business world would be to use

the similarity technique to match the resumes with

the job description which saves a considerable

amount of time for the job recruiters in the

company. Another important application would be

to use similarity measure to segment customers for

marketing campaigns using some clustering

algorithm which also uses similarity

measures.There are many similarity metric that can

be used for calculating similarity measure such as

Euclidean metric, Jaccard similarity, cosine

similarity, etc. We would be focusing on cosine

similarity as we have used the same in our proposed

system.

Cosine similarity [2] is the measure of similarity

between two non zero vectors that calculates the

cosine of the angle between these two non zero

vectors. It is used to calculate how similar two

documents are irrespective of their sizes. So we are

using to measure how similar two sentences in our

document are. The formula of cosine similarity can

be given as follows in the image below:

Figure 3: Cosine similarity formula

4.6 Page Rank

PageRank [1] is an algorithm which is used by

google search engine to rank different web pages in

their search engine results. It was named after Larry

Page who is one of the founders of Google. It is

way of measuring the importance of web pages and

accordingly the results are shown to the users. The

main component which is used in calculating the

rank of the web pages are the number of links to

that page, So by counting the number and quality of

such links to the page the algorithm estimates how

important the website is.

The following figure shows a graph of web pages

A, B, C, D having certain links to each other.

Figure 4: Graph of 4 web pages

The formula for calculating the page rank score is

as given below:

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25045

Generally page rank value for any page u can be

expressed as

PR(υ) = ∑ PR(ν)

νЄBu L(ν)

that means the PageRank value for a web page u is

dependent on the page rank values for each web

page v out of the set Bu (this set contains all the

web pages which are linked to page u), divided by

the number L(v) of links from web page v. So the

page rank algorithm outputs a probability

distribution which will be used to represent the

likelihood that a person clicking on a web page A

will arrive at another web page B. The page rank

computations require several iterations to compute

score for each web page.

Now that we have understood page rank algorithm,

we can dive into understanding text rank algorithm

[6]. There are certain similarities between these

algorithms which are listed below:

1) We use sentences in place of web pages.

2) Here the similarity between two sentences is used

as the web page transition probability.

3) Similarly to the page rank the similarity scores

are stored in square matrix.

The text rank score of sentences can be visualized

as follows:

Figure 5: Text Rank score visualization

5. Conclusion and Future Scope

In this paper, we have introduced the basic idea of

text rank algorithm which is based on page rank

algorithm to calculate the rank of individual

sentences in our document. We started by simply

tokenizing the sentences and then removing various

unwanted punctuations, numbers and other special

characters from the sentences. Later we eliminated

stop words and obtained clean sentences from the

original sentences. Then we started calculating the

equivalent vector representation of all the words in

the cleaned sentences produced and we took the

mean of all these vectors to obtain the vector

representation of all the sentences. These vector

representation then was used for calculating the

similarity between sentences and fed into page rank

algorithm which gives the score/rank of all the

sentences and the top ranked sentences forms the

summary of the document.

Currently the proposed system focuses only on

extractive summarization and not on abstractive

summarization. But the same can be extended for

implementing abstractive summarization. All the

sentences that ranked highest can then be used to

do abstractive summarization and the sentences

given to the user can be more simplified than the

sentences which are given to the user now. Since

the processing time and complexity of abstractive

summarization is very much higher than extractive

summarization, hence we were not able to dive into

abstractive summarization. But with high

processing power the same can be extended for

abstractive summarization.

6. References

[1.] Khushboo S Thakkar, Dr. R. V. Dharaskar,

M. B. Chandak, “Graph-Based Algorithms

for Text Summarization”, Third

International Conference on Emerging

Trends in Engineering and Technology,

2010.

[2.] Keet Sugathadasa, buddhi Ayesha, Nisansa

de silve, Amal Shehan Perera, Vindula

Jayawardjana, Dimuthu Lakmal, Madhavi

Perera, “Legal Document Retrieval using

Document Vector Embeddings and Deep

Learning”, Computing Conference -London,

UK, 2018.

[3.] Yujun Wen, Hui Yuan, Pengzhou Zhang,

“Research on Keyword Extraction Based on

Word2Vec Weighted TextRank”, 2nd IEEE

International Conference on Computer and

Communications, 2016

[4.] Md. Nizam Uddin, Shakil Akter Khan, “A

Study on Text Summarization Techniques

and Implement Few of Them for Bangla

Language”, 1-4244-1551-9/07IEEE, 2007.

[5.] Tomas Mikolov, Kai Chen, Greg Corrado,

and Jeffrey Dean,"Efficient Estimation of

Rahul C Kore, IJECS Volume 09 Issue 05 May, 2020 Page No. 25039-25046 Page 25046

Word Representations in Vector Space", In

Proceedings of Workshop at ICLR, 2013.

[6.] Mihalcea R, Tarau P,"TextRank: Bringing

Order into Texts", In: Proceedings of

Conference on Empirical Methods in

Natural Language Processing, Barcelona,

Spain, 2004, pp.404-411.

[7.] K. Sugathadasa, B. Ayesha, N. de Silva, A.

S. Perera, V. Jayawardana, D. Lakmal, and

M. Perera., “Synergistic union of word2vec

and lexicon for domain specific semantic

similarity”, University of London

International Programmes, 2017.

[8.] “Law2Vec: Legal Word Embeddings by

Ilias Chalkidis”, Available

https://archive.org/details/Law2Vec

[9.] “Word Embeddings tutorials by Tensorflow

Core”, Available:

https://www.tensorflow.org/tutorials/text/wo

rd_embeddings?source=post_page.

[10.] “Legal Case Reports Dataset by UCI

Machine Learning Repository”, Available:

https://archive.ics.uci.edu/ml/datasets/Legal

+Case+Reports.

