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Abstract:  

Reading legal documents are tedious and sometimes it requires domain knowledge related to that document. It 

is hard to read the full legal document without missing the key important sentences. With increasing number of 

legal documents it would be convenient to get the essential information from the document without having to go 

through the whole document. The purpose of this study is to understand a large legal document within a short 

duration of time. Summarization gives flexibility and convenience to the reader. Using vector representation of 

words, text ranking algorithms, similarity techniques, this study gives a way to produce the highest ranked 

sentences. Summarization produces the result in such a way that it covers the most vital information of the 

document in a concise manner. The paper proposes how the different natural language processing concepts can 

be used to produce the desired result and give readers the relief from going through the whole complex 

document. This study definitively presents the steps that are required to achieve the aim and elaborates all the 

algorithms used at each and every step in the process. 
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1.  Introduction 

Document Summarization is one of those 

applications of natural language processing  which 

is definitely going  to have a great impact on 

everyone’s lives. Nowadays who has the time to go 

through the entire document and understand the 

purpose of the same. The human summarization is 

the process of taking a document, understanding it, 

interpreting it and finally generating a new 

document as a summary, but this can be a time 

consuming process. So comes the concept of 

automatic text summarization. Automatic 

Summarization is the process of shortening a large 

document computationally to create a summary that 

represents the most important and relevant 

information within the original content or 

document. There are two general approaches to 

automatic summarization which are extractive 

summarization and abstractive summarization.  

In extractive summarization, the sentences are 

extracted from the original document but the 

extracted sentences are not modified in any way. 

Abstractive summarization constructs an internal 

semantic representation for the original sentences 

and then use this particular representation to obtain 

a summary that is closer to how a human being 

might express. Abstractive summarization is 

computationally much more complex and 

challenging than extractive summarization, It 

requires both natural language processing and a 

deep understanding of the domain of the original 

document. Most of the existing methods uses 

statistical methods such as frequency of occurrence, 

inverse document frequency or linguistic 

information such as term distribution, sentence 

position to extract the most relevant sentences from 

the document.  

However these methods ignore the relationship 

between different granularity information such as 

the relationships between the sentences. Hence the 

proposed system takes into consideration the 

similarities between different sentences before 

calculating the ranks of individual sentences in the 

document. Many researches are ongoing in the field 

of document summarization because text 

summarization becomes different and unique 

problem for each domain of research. 
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2. Background and Related Work 

This part of the paper illustrates different work 

carried out by others in areas which are relevant to 

our research. The sub-parts below are the most 

important key areas in our study. 

2.1 Semantic Similarity Measures 

There are various applications of text similarity 

measures [2] which includes automatic text 

summarization, relevance feedback classification, 

automatic evaluation of machine translation and 

determining text coherence. There are various 

approaches which are used to calculate the 

similarity measure which are based on statistical 

methods, vector representation of words in the 

given document, string or corpus based approach 

and hybrid similarity measures. Some applications 

like TF-IDF uses inverse document frequency for 

calculating the frequencies of terms where it does 

not take into consideration the surrounding context 

amongst that term in the text. The mapping in such 

method is simply done using count and probabilistic 

measures. 

Our study proposes a method in which we first 

convert all the words present inside the document 

into it’s equivalent vector from by using an 

appropriate word embedding model which takes 

into consideration the semantic value of each word, 

where  each word is located in an n-dimensional 

(n=10 or 20) space. All the words with similar 

semantics are placed closer to each other in this 

space. After converting the words in the vector form 

we use vector similarity measure to calculate the 

likeness. In this way, we also consider the semantic 

of all the terms present in the document which gives 

a better result.   

2.2 Keyword Extraction 

The smallest unit to express the core meaning of a 

document is known as a keyword [3]. By extracting 

several keywords from a document to summarize 

document theme content, helps users to quickly 

understand whether the document is of their interest 

or not. Keyword extraction can be classified in two 

categories which are supervised and unsupervised. 

In supervised we have two different methods which 

are Two classification problem and Multiple 

classification problem. In unsupervised we have 

three different methods which are word frequency, 

Model based and Graph methods. 

Supervised methods are those which requires 

human intervention whereas Unsupervised methods 

are without human intervention which extracts 

keywords directly through the information of the 

text which in turn improves the efficiency greatly. 

In unsupervised methods, the word graph model 

treats the document as a network composed of 

words which is based on the theory of PageRank 

link analysis to calculate the importance of words.  

Similarity and co-occurrence frequency between 

words are used as the weight for extracting 

keywords and Word2vec is used to calculate the 

close degree between the words. Word2vec makes 

use of deep learning to map each word into a vector 

of k-dimension.  

2.3 Graph Based Ranking Algorithm 

Using graph based ranking algorithm [1], we can 

find the importance of a vertex present within the 

graph based on the information which are drawn 

from the graph structure. In this section, a graph 

based algorithm-HITS which were previously found 

to be useful on a large range of documents is 

presented. This graph based ranking algorithm 

(HITS) can be used for unidirectional or weighted 

graphs. 

HITS(Hyperlink-Induced Topic Search) [1] is a link 

analysis algorithm that ranks web nodes/pages. It 

estimates two types of values for a page which are 

hubs and authorities. Authority  estimates the value 

of content of the page whereas  hub estimates the 

value of its links to the other pages. HITS is an 

iterative algorithm based on linkage of documents 

like PageRank. The algorithm performs a series of 

iterations which consists of the following two steps: 

• Authority update 

• Hub update 

The above two score for a node is calculated 

using the following algorithm: 

• Start  

• Initialize hub score and authority score to 1 

for each node. 

• Update authority score. 

• Update hub score. 
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• Normalize hub score by dividing each hub 

score by square root of the sum of squares of all 

the hub    scores. 

• Normalize authority score by dividing each 

authority score by square root of the sum of 

squares of all the authority scores. 

• Goto step 3 and repeat if necessary.  

Formula for calculating authority and hub score: 

HITSA (Vi) =   ∑ HITSH (Vj)  

Vj ЄIn(Vi) 

 

HITSH (Vi) =   ∑ HITSA (Vj)  

Vj ЄOut(Vi)  

3. Proposed System 

As stated earlier, the proposed system would be 

focusing on generating extractive summary from the 

given document using different natural language 

processing techniques such as word embedding, 

similarity measures, and ranking algorithm. 

So before getting into specifications of the proposed 

system, let us understand the overall flow of the 

system which is given below in the figure. 

 

Figure 1: Flow of the system 

The overall flow of the system can be explained 

with the help of following steps: 

1) Initially we will concatenate all the text present 

in the document. 

2) Then we would split the text into individual 

sentences 

This can be done using the tokenizer of the natural 

language tool kit package of python.  

3) Then we would remove all the punctuations, 

numbers and special characters from all the 

individual sentences. 

This can be achieved with the help of regular 

expression and python packages. 

4) Then all the alphabets are converted into lower 

case alphabets 

This is done so there would not be any problem 

because of character case sensitivity in the 

sentences. 

5) Then we would remove all the stop words from 

the sentences because stop words do not contribute 

any meaningful context to the sentences and would 

only waste processing time in the next step of 

vector conversion. 

After all the above steps we would get clean 

sentences which are free from stop words and all 

other unwanted punctuations, numbers and special 

characters. 

6) Now, we will fetch vectors for the constituent 

words in a sentence and then take mean/average of 

those vectors to obtain a consolidated vector for all 

the sentences in the document. 

The above step is done using the word embedding 

model known as Law2Vec, which was developed 

by the Department of Informatics of the University 

of Athens. 

After the above step we would get vector 

representation of all the sentences which would be 

carry forwarded in the later steps.  

7) Now, we would create an empty similarity matrix 

of nxn size where n is the number of sentences 

present in the document. 

8) Now, we would calculate cosine similarity for all 

the sentences present in the document using the 

vector representation of the sentences and not the 

original sentences. 

Right after calculating the similarities between the 

sentences using their vector form we would be 

inserting all these in the similarity matrix created in 

the above steps. 

9) After all the above steps, now we would take this 

similarity matrix and apply a ranking algorithm on 

this similarity matrix obtained in the above step. 
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In our case, we would be using page rank algorithm 

to calculate the ranking of  all the individual 

sentences. After ranking all the sentences now we 

can display top ranked sentences from the 

document. 

4. Overview of the System 

In this section, we will be focusing more on all the 

concepts such as tokenization, stop words 

elimination, word embedding, similarity measure, 

ranking algorithm which are used in the above 

proposed system. 

4.1 Dataset 

Dataset was downloaded from UCI-Machine 

Learning Repository [10]. The downloaded dataset 

contains Australian Legal Cases from the Federal 

Court of Australia (FCA). It contains almost 4000 

Legal cases. 

4.2 Tokenization 

Tokenization in a defined document unit is basically 

the task of chopping up the sentences into pieces, 

called tokens, perhaps it also means at the same 

time throwing away certain characters, such as 

punctuation. 

One can think of tokens as words as a token in 

sentence, and sentences as tokens in a paragraph. 

Below is an example of tokenization: 

Input: 

Friends Romans Countrymen lend me your ears; 

Output:         

The above token are more often referred to as terms 

or sometimes words. 

We would be using sentence tokenizer of natural 

language tool kit package of python which is 

already trained and thus it very well knows how to 

mark the end and the beginning of the sentences at 

what characters and at what punctuations. 

4.3 Stop Words Elimination 

In the below section, we would be discussing on 

why stop word elimination is an important step in 

natural language processing. 

One of the important forms of pre-processing in 

natural language processing is to filter out all the 

useless data present in the document. In natural 

language processing, such useless words that we 

filter out in the pre-processing step are referred to as 

stop words. So a stop word is a commonly used 

word such as “the”. “a”, “an”, “in”, etc which are 

always ignored by all the applications using natural 

language processing or search engines as a matter of 

fact. 

We do not want stop words to waste any space 

inside the database or increase any processing time 

in our application so it is better to eliminate such 

words. we can stop words easily as the natural 

language tool kit package in python has a list of 

stopwords stored in 16 different languages. So we 

just need to download the corpus and start 

eliminating all the stop words from all the sentences 

in the document. 

4.4 Word Embedding 

In natural language processing, when working with 

text, the first thing that we must do is come up with 

a strategy to convert strings to numbers or to 

vectorize the text before feeding it to any model. 

There were many techniques that came before word 

embedding to convert strings to text or vectorize the 

text but no technique was as good as word 

embedding [9]. Two such techniques that came 

before word embedding are as follows: 

1) One-hot encodings [9] 

In this, we might “one-hot” encode each word 

present in the vocabulary. To represent each of 

these words we would create a zero vector having 

length equal to the vocabulary and then we can 

place a one in the index that will correspond to the 

word. This approach is inefficient because if there 

are 1,000 words so to one-hot code each word we 

would have to create vector almost all the elements 

are zero. 

2) Encode each word with a unique number [9]. 

In this approach we might encode each word with a 

unique number. This method is also inefficient 

because instead of sparse vector we have a dense 

vector where all the elements are full. There are two 

downsides to this method, the first one is that the 

integer encoding is arbitrary and it does not capture 

any relationship between the words, and the second 

one is that integer encoding can be challenging for a 

model to interpret. 

Hence, word embedding [9] is the most efficient 

one which gives us a way to use an efficient, dense 
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representation in which all the similar words have a 

similar encoding and the main part is that we do not 

have to specify the encoding by hand. Here an 

embedding is a dense vector of floating point 

values. And instead of specifying these values 

manually we can train these parameters. It is very 

much common to see 8-dimensional word 

embedding. There are word embeddings with 1024-

dimensions also when we work with very large 

datasets. It takes more data to learn but gives very 

fine grained relationship between the words. The 

graphical representation of word embedding can be 

visualized as follows: 

 

Figure 2: Graphical representation of word 

embedding 

Thus we will be using Law2Vec [8] word 

embedding model which was developed by the 

department of Informatics of the University of 

Athens. This model contains millions of legal words 

already trained and are ready to use.\ 

4.5 Similarity Measure 

Similarity measures [2] are used to calculate 

similarity between various documents, or different 

sentences present inside the document. It defines 

how much alike two objects are. It has various 

applications in natural language processing such as 

in automatic text summarization. It also has its 

application in computer vision. It can be used in 

many real world applications, one important 

application in the business world would be to use 

the similarity technique to match the resumes with 

the job description which saves a considerable 

amount of time for the job recruiters in the 

company. Another important application would be 

to use similarity measure to segment customers for 

marketing campaigns using some clustering 

algorithm which also uses similarity 

measures.There are many similarity metric that can 

be used for calculating similarity measure such as 

Euclidean metric, Jaccard similarity, cosine 

similarity, etc. We would be focusing on cosine 

similarity as we have used the same in our proposed 

system. 

Cosine similarity [2] is the measure of similarity 

between two non zero vectors that calculates the 

cosine of the angle between these two non zero 

vectors. It is used to calculate how similar two 

documents are irrespective of their sizes. So we are 

using to measure how similar two sentences in our 

document are. The formula of cosine similarity can 

be given as follows in the image below: 

 

Figure 3: Cosine similarity formula 

4.6 Page Rank  

PageRank [1] is an algorithm which is used by 

google search engine to rank different web pages in 

their search engine results. It was named after Larry 

Page who is one of the founders of Google. It is 

way of measuring the importance of web pages and 

accordingly the results are shown to the users. The 

main component which is used in calculating the 

rank of  the web pages are the number of links to 

that page, So by counting the number and quality of 

such links to the page the algorithm estimates how 

important the website is. 

The following figure shows a graph of web pages 

A, B, C, D having certain links to each other. 

  

Figure 4: Graph of 4 web pages 

The formula for calculating the page rank score is 

as given below: 
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Generally page rank value for any page u can be 

expressed as 

PR(υ) = ∑ PR(ν)  

νЄBu    L(ν) 

that means the PageRank value for a web page u is 

dependent on the page rank values for each web 

page v out of the set Bu (this set contains all the 

web pages which are linked to page u), divided by 

the number L(v) of links from web page v. So the 

page rank algorithm outputs a probability 

distribution which will be used to represent the 

likelihood that a person clicking on a web page A 

will arrive at another web page B. The page rank 

computations require several iterations to compute 

score for each web page. 

Now that we have understood page rank algorithm, 

we can dive into understanding text rank algorithm 

[6]. There are certain similarities between these 

algorithms which are listed below: 

1) We use sentences in place of web pages. 

2) Here the similarity between two sentences is used 

as the web page transition probability. 

3) Similarly to the page rank the similarity scores 

are stored in square matrix.  

The text rank score of sentences can be visualized 

as follows: 

 

Figure 5: Text Rank score visualization 

5. Conclusion and Future Scope 

In this paper, we have introduced the basic idea of 

text rank algorithm which is based on page rank 

algorithm to calculate the rank of individual 

sentences in our document. We started by simply 

tokenizing the sentences and then removing various 

unwanted punctuations, numbers and other special 

characters from the sentences. Later we eliminated 

stop words and obtained clean sentences from the 

original sentences. Then we started calculating the 

equivalent vector representation of all the words in 

the cleaned sentences produced and we took the 

mean of all these vectors to obtain the vector 

representation of all the sentences. These vector 

representation then was used for calculating the 

similarity between sentences and fed into page rank 

algorithm which gives the score/rank of all the 

sentences and the top ranked sentences forms the 

summary of the document. 

Currently the proposed system focuses only on 

extractive summarization and not on abstractive 

summarization. But the same can be extended for 

implementing abstractive summarization. All the 

sentences that ranked highest  can then be used to 

do abstractive summarization and the sentences 

given to the user can be more simplified than the  

sentences which are given to the user now. Since 

the processing time and complexity of abstractive 

summarization is very much higher than extractive 

summarization, hence we were not able to dive into 

abstractive summarization. But with high 

processing power the same can be extended for 

abstractive summarization. 
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