
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 9 Issue 01 January 2020, Page No. 24921-24924

ISSN: 2319-7242 DOI: 10.18535/ijecs/v9i01.4425

Minakshi Roy, IJECS Volume 09 Issue 01 January, 2020 Page No.24921-24924 Page 24921

Implementation of Quick UDP Internet Connections (QUIC)

Protocol
Minakshi Roy, Shamsh Ahsan, Gaurav Kumar, Ajay Vimal

Dept. of CSE, Sikkim Manipal Institute of Technology, SMU India

Abstract

With the advent of the Internet growth worldwide, we need to have a protocol which is faster and provides a

better support for the following problems:

• Faster Connection Establishment Time

• Good Congestion Control

• Connection Migration

• Good Error Correction

One of the key aspects taken under consideration was current scenario of connection establishment time

whenever a website is requested and poor video buffering over existing Internet Connections.

The prime objective is to create a proxy server which routes the incoming connection requests to QUIC

supported libraries if the client supports QUIC. If the client does not support QUIC then it routes the

incoming request to existing web server which can then handle the request using TCP. After creation of the

proxy server a website has to be created using which we can test various aspects of the QUIC protocol.

1. Introduction

Quick UDP Internet Connections(QUIC) is a new

transport which aims to reduce latency when

compared to that of Transmission Control

Protocol(TCP). QUIC is very similar to

TCP+TLS+HTTP/2 implemented on User

Datagram Protocol(UDP). Since TCP is

implemented in operating system kernels, and

middle box firmware, making significant changes

to TCP is next to impossible. However, since

QUIC is built on top of UDP, it suffers from no

such limitations.

QUIC is an encrypted transport: packets are

authenticated and encrypted, preventing

modification of the protocol by middleboxes.

Features of QUIC Protocol:

 Zero Round Trips for Connection

Establishment

QUIC handshakes frequently require zero

roundtrips before sending payload, as compared to

1-3 roundtrips for TCP+TLS. The first time a

QUIC client connects to a server, the client must

perform a 1-roundtrip handshake in order to

acquire the necessary information to complete the

handshake. The client sends an inchoate (empty)

client hello (CHLO), the server sends a rejection

(REJ) with the information the client needs to

make forward progress, including the source

address token and the server’s certificates. The

next time the client sends a CHLO, it can use the

cached credentials from the previous connection

to immediately send encrypted requests to the

server.

http://www.ijecs.in/

Minakshi Roy, IJECS Volume 09 Issue 01 January, 2020 Page No.24921-24924 Page 24922

 Pluggable Congestion Control

QUIC has pluggable congestion control and

provides richer information to the congestion

control algorithm than TCP. One example of

richer information is that each packet, both

original and retransmitted, carries a new sequence

number.

 Solution to Parking Lot Problem

QUIC connections are identified by a 64-bit

connection ID, randomly generated by the client.

When a QUIC client changes IP addresses, it can

continue to use the old connection ID from the

new IP address without interruption.

 Packet Recovery without Retransmission

In order to recover from lost packets without

waiting for a retransmission, QUIC can

complement a group of packets with a Forward

Error Connection(FEC) packet. Much like RAID-

4, the FEC packet contains parity of the packets in

Figure 1 : QUIC in HTTPS Stack [5]

the FEC group. If one of the packets in the group

is lost, the contents of that packet can be

recovered from the FEC packet and the remaining

packets in the group.

2. Quic Features

 Built-in security (and performance)

One of QUIC’s more radical deviations from the

now venerable TCP, is the stated design goal of

providing a secure-by-default transport protocol.

QUIC accomplishes this by providing security

features, like authentication and encryption, that

are typically handled by a higher layer protocol

(like TLS), from the transport protocol itself.

The initial QUIC handshake combines the typical

three-way handshake that you get with TCP, with

the TLS 1.3 handshake, which provides

authentication of the end-points as well as

negotiation of cryptographic parameters. For those

familiar with the TLS protocol, QUIC replaces the

TLS record layer with its own framing format,

while keeping the same TLS handshake messages.

Not only does this ensure that the connection is

always authenticated and encrypted, but it also

makes the initial connection establishment faster

as a result: the typical QUIC handshake only takes

a single round-trip between client and server to

complete, compared to the two round-trips

required for the TCP and TLS 1.3 handshakes

combined.

But QUIC goes even further, and also encrypts

additional connection metadata that could be

abused by middle-boxes to interfere with

connections. For example packet numbers could

be used by passive on-path attackers to correlate

users activity over multiple network paths when

connection migration is employed (see below). By

encrypting packet numbers QUIC ensures that

they can't be used to correlate activity by any

entity other than the end-points in the connection.

Encryption can also be an effective remedy to

ossification, which makes flexibility built into a

protocol (like for example being able to negotiate

different versions of that protocol) impossible to

use in practice due to wrong assumptions made by

implementations (ossification is what delayed

deployment of TLS 1.3 for so long, which was

only possible after several changes, designed to

prevent ossified middle-boxes from incorrectly

blocking the new revision of the TLS protocol,

were adopted).

 Head-of-line blocking

One of the main improvements delivered by

HTTP/2 was the ability to multiplex different

HTTP requests onto the same TCP connection.

This allows HTTP/2 applications to process

Minakshi Roy, IJECS Volume 09 Issue 01 January, 2020 Page No.24921-24924 Page 24923

requests concurrently and better utilize the

network bandwidth available to them.

This was a big improvement over the then status

quo, which required applications to initiate

multiple TCP+TLS connections if they wanted to

process multiple HTTP/1.1 requests concurrently

(e.g. when a browser needs to fetch both CSS and

Javascript assets to render a web page). Creating

new connections requires repeating the initial

handshakes multiple times, as well as going

through the initial congestion window ramp-up,

which means that rendering of web pages is

slowed down. Multiplexing HTTP exchanges

avoids all that.

This however has a downside: since multiple

requests/responses are transmitted over the same

TCP connection, they are all equally affected by

packet loss (e.g. due to network congestion), even

if the data that was lost only concerned a single

request. This is called “head-of-line blocking”.

QUIC goes a bit deeper and provides first class

support for multiplexing such that different HTTP

streams can in turn be mapped to different QUIC

transport streams, but, while they still share the

same QUIC connection so no additional

handshakes are required and congestion state is

shared, QUIC streams are delivered

independently, such that in most cases packet loss

affecting one stream doesn't affect others.

This can dramatically reduce the time required to,

for example, render complete web pages (with

CSS, Javascript, images, and other kinds of assets)

particularly when crossing highly congested

networks, with high packet loss rates.

3. Quic Implementation

A proxy server will route the incoming connection

requests to the appropriate protocols.

By accessing the website via Transport Layer

Sequrity(TLS)/Transmission Control Protol(TCP)

the browser checks if the http header returned by

the website contains the alt-svc field.

If the response contains a header: alt-svc:

'quic=":443"; ma=2592000; ', the UDP port 443

of the website supports the QUIC protocol; max-

age is 2592000 seconds.

Then, the browser will initiate a QUIC

connection. Before the connection is established,

the http request is still sent via TLS/TCP.

Once the QUIC connection is established,

subsequent requests are sent through QUIC.

Figure 2: QUIC Proxy Server Requests

Routing

When the QUIC connection is not available, the

browser will take a 5min, 10min interval to check

if the QUIC connection can be recovered. If it

cannot be recovered, it will automatically fall back

to TLS/TCP.

4. Result And Observations

In Figure 3 a plot is made in performance

differences between QUIC and TCPwith each cell

representing a different data size. Boxes with

purple colours indicate that QUIC is faster than

TCP and green indicates that TCP is faster than

QUIC. Darker colours show more performance

difference, and white cells indicate no significant

difference between QUIC and TCP.

Minakshi Roy, IJECS Volume 09 Issue 01 January, 2020 Page No.24921-24924 Page 24924

Figure 3: QUIC outperforms TCP under

various load and speed.

5. References

[1] Byron Caughey, Christina D. Orru,

Bradley R. Groveman, Andrew G.

Hughson, Matteo Manca, Lynne D.

Raymond, Gregory J. Raymond, Brent

Race, Eri Saijo, Allison Kraus,Chapter

Seventeen - Amplified Detection of Prions

and Other Amyloids by RT-QuIC in

Diagnostics and the Evaluation of

Therapeutics and Disinfectants,Editor(s):

Giuseppe Legname, Silvia Vanni,Progress

in Molecular Biology and Translational

Science,Academic Press,Volume

150,2017,Pages 375-388,

ISSN 1877-1173,ISBN 9780128112267

[2] R Hamilton, J Iyengar, “QUIC: A UDP-

Based Secure and Reliable Transport For

HTTP/2”., 2016

[3] Adam Langley, Alistair Riddoch, Alyssa

Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov,

Ian Swett, Janardhan Iyengar, Jeff Bailey,

Jeremy Dorfman, Jim Roskind, Joanna

Kulik, Patrik Westin, Raman Tenneti,

Robbie Shade, Ryan Hamilton, Victor

Vasiliev, Wan-Teh Chang, Zhongyi Shi *

,”The QUIC Transport Protocol: Design

and Internet-Scale Deployment”, Google.

2017

[4] A. Barth. 2015. RFC 6454: The Web

Origin Concept. Internet Engineering Task

Force (IETF) (Dec. 2015).

[5] M Fischlin, F Günther, "Multi-stage key

exchange and the case of google's QUIC

protocol”, Proceedings of the 2014 ACM

SIGSAC

[6] Hamilton, J Iyengar, I Swett,” QUIC: A

UDP-based secure and reliable transport

for HTTP/2R”, A Wilk - IETF, draft-

tsvwg-quic-protocol-02, 2016

[7] G Carlucci, L De Cicco, S Mascolo,” HTTP

over UDP: an Experimental Investigation

of QUIC” 30th Annual ACM Symposium,

2015

https://scholar.google.co.in/citations?user=gfoYjCMAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=Anl7oLEAAAAJ&hl=en&oi=sra
https://dl.acm.org/citation.cfm?id=2660308
https://dl.acm.org/citation.cfm?id=2660308
https://dl.acm.org/citation.cfm?id=2660308
https://scholar.google.co.in/citations?user=287Bew0AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=q2EFrO8AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=NUX-DnQAAAAJ&hl=en&oi=sra
https://dl.acm.org/citation.cfm?id=2695706
https://dl.acm.org/citation.cfm?id=2695706
https://dl.acm.org/citation.cfm?id=2695706

