
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 8 Issue 3 March 2019, Page No. 24575-24585

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v8i03.4296

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24575

Framework for Lossless Data Compression Using Python

Manas Malik

Student

Department of Computer Science and Engineering

School of Engineering and Technology, Jain University

Abstract:
A lot has been done in the field of data compression, yet we don’t have a proper application for compressing

daily usage files. There are appropriate and very specific tools online that provide files to be compressed and

saved, but the content we use for streaming our videos, be it a Netflix video or a gaming theater play, data

consumed is beyond the calculation of a user. Back-end developers know all about it and as developers we have

acknowledged it but not yet achieved it in providing on an ease level. Since the user would not never be

concerned about compression, developers can always take initiative while building the application to provide

accessibility with compression before-hand. We have decided to create a framework that will provide all the

functionality needed for a developer to add this feature. Making use of the python language this process can

work. I’m a big fan of Python, mostly because it has a vibrant developer community that has helped produce an

unparalleled collection of libraries that enable one to add features to applications quickly. For the DEFLATE

lossless compression, has a higher level of abstraction provided by the zlib C library, in Python it is generally

provided by the Python zlib library which is an interface, we have a lot to do including the audio, video and

subtitles of the file. We also make use of the fabulous ffmpy library. ffmpy is a Python library that provides

access to the ffmpeg command line utility. ffmpeg is a command-line application that can perform several

different kinds of transformations on video files, including video compression, which is the most commonly

requested feature of ffmpeg. Frame rate and audio synchronization are few other parameters to look closely.

This is an ongoing project and there remains few implementation aspects, data compression remains a concern

when touched upon the design. We along with python community intend to solve this issue.

1. Introduction

This paper includes the study of different

compression techniques that are currently in use.

Making use of all the existing libraries and

theoretical concepts, we intent to create a new

framework for developers, this will be the first in

Python language that would provide all the

necessary features for compression. Most

importantly video files that consume data of use on

daily basis. Handling each frame of the video is a

very efficient and lossless process, so far it does not

has any fast providing application. The field

additionally demands collaboration of other tools

outside compression tools existing. As Python is

becoming more handy to developers, it is very

convenient for the developers to grasp algorithms

and develop in the language. All the theoretical

concepts are considered based on the study emerged

so far, practical libraries used are very specific and

not quite efficient.

2. Compression TECHNIQUES

Number of pixels can be reduced using video

compression, we can achieve this by reducing all

the irrelevant and unnecessary information.

Compression technique purposes include:

 Colour resolution can be reduced along with

the noise or the unnecessary colour

information.

 To have no invisible portion in the image.

http://www.ijecs.in/

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24576

 In comparing the adjacent frames remove the

details that remain unchanged.

The algorithm and techniques used for the video

compression are depicted in the Fig.1.

 Fig1: Compression techniques

 categories

2.1 Fuzzy Concepts

For providing an optimal and efficient compression,

grey image compression techniques are proposed

based on hybrid transforms and neuro fuzzy

environment, i.e. in (Thakur, Dewangan, and

Thakur 2014). The results obtained by the

experiments demonstrate when performed

comparison to the traditional techniques that include

JPEG and JPEG2K, the compression technique

suggested the minimized Mean Square Error

(MSE). In (Thakur and Thakur 2014) a JPEG

standard, fuzzy soft hybrid is proposed for

deploying a constructive grey image compression

codec. If compared traditional JPEG with JPEG2K

standards the proposed fuzzy based soft hybrid

JPEG technique has an enhanced ratio of

compression, better and increased image quality.

2.2 Set Partitioning in Hierarchical Trees

(SPIHT) Algorithm

In (A. Mallaiah 2012), for image compression with

Huffman encoder SPIHT algorithm is proposed. For

us to have a better image quality and enhanced

definition, we have Retinex algorithm. Following a

bit-plane sequence, Image wavelet transform

coefficients of the image, consists of individual bits,

that are coded with SPIHT. Recovering all the bits

by coding transform (every single bit of it).

There is a perfect reconstruction by the wavelet

transform, if infinite precision numbers is the

storing of numbers as. perfect reconstruction only if

its Possible scenarios include the practice of

recovering the image consistent and perfect

recovery after rounding. However, this is not the

most efficient one.

We propose an integer multiresolution

transformation, for lossless compression, we call it

S+P transform, like the wavelet transform. During

the transformation (instead of after) carefully

truncating the coefficients of transform., it solves

the finite-precision problem.

As we understand, complex compression algorithm

tend to take more encoding time that compared to

the decoding time. One of the most straight

compression consequence because of the simplicity

is the higher coding/decoding speed. The SPIHT

algorithm is nearly regular or uniform, Coding time

is equal to the time of decoding time.

2.3 Principal Component Analysis (PCA)

In (Seema Kalangi 2013), for the video

compression, a technique called DWT is used. A 2D

video file is converted from a 3D video, at the

initial stages, for preventing the motion recompense

step. PCA based video representation algorithm

operations is enabled, visual change estimation and

segmentation of video credits it by performance. In

the PCA approach, the contained information which

is a data set stored in a computational assembly

with dimensions reduced that are anticipated upon

by the integral projection of the data set onto a

subspace produced by a system of orthogonal axes.

Use of Singular Values Decomposition (SVD)

method may help us obtain the optimal system of

axes. Appropriate data features or properties are

documented with some loss of data, it is achieved

by reduced dimension computational structure.

3. TECHNIQUES TO EMBED

Used for the video frames , the embedding methods

are classified into-

Compression
Technique

Fuzzy
Concepts

SPIHT
Algorithm

PCA Based
Method

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24577

• Digital watermarking

• Data hiding algorithms

3.1 Digital watermarking

It is a procedure of approaching the digital signal

into the digital content. The stages tangled in the

digital watermarking procedure is represented in

Fig.2

Fig2: Digital Watermarking overall process

At the beginning, the watermark image and the

image that is original are embedded using the

watermarking algorithm. Only after this process, the

watermark image is obtained. While regaining the

image the watermark and the original images are

parted. An efficient digital watermarking must have

the subsequent necessities,

▪ Strong

▪ Clear

▪ Ability to endure adjustments

and misrepresentations.

▪ Effectual store and transmit

Fig.3 represents the classification of the digital

watermarking techniques.

Fig3: Digital Watermarking Types

3.1.1 Least Significant Bit (LSB)

The information in the cover image is embedded

with LSB approach. There are steps that are

followed,

Step 1: Grey scale image is converted from a

RGB image.

Step 2: Double correctness of the image is to be

estimated

 Step 3: In the watermarked image, most

significant bits to be shifted to low significant bits

Step 4: Translate the least significant bits of the

host image to zero.

Step 5: Modified host image is added by a shifted

version of the watermarked image.

For the grey scale images, a LSB based digital

image watermarking is anticipated, in (Chopra et

al. 2012). Image embeds a message by exploiting

the algorithm(LSB). Experimental results provide

the proof of the watermarking algorithm, by

demonstrating the optimal Mean Square

Error(MSE) and Peak-Signal-to-Noise

Ratio(PSNR) values. The image security is

analysed using the LSB technique in (Singh,

Shaw, and Aslam 2015). the influence of noise in

Steps involved in LSB

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24578

the images is also examined further. The

examination of noise effect and image security

shows the evidence of the presence of noise

occurrence in the watermarked images, which

presents an impact in the watermark image.

3.1.2 Discrete Wavelet Transform (DWT)

With a fixed window size, we have a time domain-

based method for analysis, it is called DWT. There

are four frequency bands, decomposed of the

image processed by DWT. The bands are LL, LH,

HL and HH. Low frequency districts include LL

bands and LH, HL, HH are the high frequency

districts. The sub-level frequency district

information is produced by the application of

DWT transformation for the low-level frequency

component. According to (Senthil Nathan.M

2013) the 2D image after the application of three

DWT disintegration is shown in Fig.4.There is a

clear representation of low pass filter (L) and high

pass filter (H). The frequency districts of the

original image are HL1, LH1, HH1. The four

districts such as LL2, HL2, LH2 and HH2 are

decomposition of low-frequency district

information. The original image signal

information is placed in the frequency districts

such as LH, HL, and HH. District information of

the low-frequency is close to the original image.

 Fig4: Decomposed image using DWT

LL3 HL3 HL2 HL1

LH3 HH3

LH2 HH 2

LH1 HH1

LH1 HH1

According to (Shivani Khosla 2014), for the

first average sub signal the accurate formula is

depicted as follows,

 (1)

where, N is the length of the signal. DWT

based watermarking involves steps,

Step 1: Multiple sub bands using DWT are

decomposed using original image.

Step 2: Necessary and valid sub band for

watermark embedding are picked.

Step 3: Wavelet coefficients are picked on by the

watermark image exploitation.

Step 4: Watermark image is obtained once the

embedding process is complete.

The scale parameter is discretized to integer

powers of 2,2j,j=1,2,3.., in the discrete wavelet

transform, it is to so the number of voices/octave

remains 1. Difference between scales on a log2

scale is 1 for DWT. The conversion parameter is

relative to the scale in the down sampled DWT. It

means scale, 2j, translate by 2jm where m is a

nonnegative integer. Scale parameter is limited

within bounds to powers of two, in non-decimated

discrete wavelet transforms (modwt and swt).

Translation parameter is an integer.

Advantages of Discrete Wavelet Transform

(DWT)

• The original signal can be easily

reconstructed using inverse wavelet

transformation

• We can use inverse wavelet

transformation, to reconstruct the original

signal.

• By disintegrating the original signal into

wavelet transform, tends to provide the

positional information.

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24579

3.1.3 Discrete Cosine Transform (DCT)

The spatial domain conversion of the signal

is by exploitation of the cosine waveform, to

the frequency domain. Image is represented

as the sum of varying frequencies and

magnitudes, using discrete cosine transform.

The DCT supports to distinct the image into

parts with respect to the visual class of the

image, parts are also spectral sub-bands.

The discrete cosine transform is very similar

to the discrete Fourier transform.

Transformation of a signal or an image from

the spatial domain to the frequency domain.

(Fig 7.8).

DCT Encoding

For a 1 dimension, we have the following

general equation defined by the DCT:

N data items,

and the corresponding inverse 1dimension

DCT transform is simple F
-1

(u), i.e.:

where

The general equation for a 2 dimension

(N by M image) DCT is defined by the

following equation:

and the equivalent inverse 2 dimension

DCT transform is simple F
-1

(u,v), i.e.:

where

The operation of the discrete cosine

transform are :

 The input image is N by M;

 The intensity of the pixel in row i and

column j, f(i,j).

 The discrete cosine transform

coefficient in row k1 and column k2

of the DCT matrix is F(u,v).

 Usually, for most images, in the

upper left corner of the discrete

cosine transform, we have much of

the signal energy.

 Since the low rate values represent

higher frequencies, often are small-

small enough to be neglected with the

little visible distortion, compression is

achieved.

 Each pixel’s gray scale level is

contained in an array, i.e. the DCT

input of an 8 by 8 array of integers.

 8 bit pixels have levels from 0 to 255.

 8 point DCT would be:

where

An image is represented as an image of sum

of sinusoids of varying frequencies and

magnitudes, with DCT.

The 2D DCT of an image is computed using

dct2 function. For a typical image,

maximum of the visually significant

information about the image is focused in

http://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html#DCTenc

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24580

just limited coefficients of the DCT. This is

the reason, compression application for an

image, include DCT. The international

standard lossy image compression algorithm

JPEG includes discrete cosine transform.

Advantages of DCT

 Stronger energy compaction property in

DCT.

 Implementation is more efficient

computationally.

 In the low-level of frequency components of

DCT all the information is concentrated.

 Easy prevention of the high level frequency

components.

3.2 Techniques For Data hiding

Data hiding, the process of using a typical cipher

with an encryption key to encrypt the original

image.

3.2.1 Data hiding of H.264/AVC video stream

A readable data-hiding algorithm is suggested for

embedding the data, an efficient technique which

quantizes into DCT coefficients, suggested in (Ma

et al. 2010). We make use of a 4x4 DCT block, to

address the misrepresentation introduced by the

embedding process.

Using the intraframe prediction directions,

distortion drift is being prevented. The vital

distortion is decreased, and the embedding

capacity is increased by using the algorithm. For

the video stream H.264/AVC video stream, a

scheme is proposed in (Xu, Wang, and Shi 2014).

Scheme includes components such as: H.264/AVC

video encryption, data embedding, and data

extraction. With the stream ciphers the residual

coefficients are encrypted, with the properties of

the H.264/AVC, the code words of the motion

vector differences and intra-prediction modes, and

for the code words for the residual coefficients.

With the properties of the H.264/AVC, the code

words of the intra-prediction modes, code words

H.264/AVC video-sequence based method is

proposed in (Li, Chen, and Zhao 2010), for data

hiding. The suitable data is hidden using the

appropriate quantization and transformation

coefficients. We make use of desirable data

recovering process to recover the data hidden.

Further, from the encoded stream they are

extracted.

3.2.2 Data hiding techniques for MPEG video

The proposed method exploiting, solves the video

bit stream size increment related issues. There are

two approaches proposed for the compression of

MPEG video, in (Shanableh 2012), two data hiding

approaches. The quantization scale of the constant

bitrate video is our first approach for hiding data.

The exploitation of the macro block collation for

hiding the message bits is our second approach. The

macro blocks are assigned to the arbitrary slice

groups by exploitation of the content of the image.

With minimum distortion and compression

overhead, the proposed approaches produce an

efficient message payload.

Thus, the proposed methods yield optimal message

payload with slight distortion and compression

overhead.

4. PROPOSED WORK

Fig.4. represents the formation framework of the

block code. We make use of the framework to

embed the successive video frames.

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24581

Fig 5: Block code formation framework

Multiple split of the input video at first, Fuzzy

Adaptive Median Filter (FAMF) will process each

frame. Noises will be deducted in the

preprocessing. Compression using block wise

pixel grouping takes place before embedding the

frames. The splitting of the image into patches and

estimates the recurrent pixels and location for all

patches, is done using the suggested compression

process. Before the pixel values, estimated pixel

values will be placed. Code takes output of each

patch is considered. The compressed frames are

embedded by the embedding techniques that

include Least Significant Bit (LSB), once all the

frames are compressed. Using inverse block code

the decompression of the compressed frames done

ate the receiver end. Videos are then converted

back from the decompressed frames.

4.1 What is Python zlib?

For using the DEFLATE lossless compression

algorithm, we have a Python interface to the zlib

library of C, Python zlib library. We can make use

of the library commercially; the format of the

compression is open source in nature and has not

been fallen under any patent. It is quite portable

and completely lossless in nature. There is no

expand in the data at all, with respect to the

mechanism.

There are two application on major level,

compression and decompression, whether be it a

structured in-memory content, or a string, or a file.

Library includes features such as compression and

decompression. Operation including both

compression and decompression can be done as a

one-off operation, or by splitting of the data into

portions. In UNIX system we make use of gzip

file format/tool, it is based on DEFLATE.

It is also well-matched (compatible) with

the gzip file format/tool (which is also based on

DEFLATE), used in UNIX systems.

We can compress a string of data by making use

of the zlib library, that provides us with the

functionality of compression.

Taking only two arguments, we have syntax of

this function:

compress (data, level=-1)

The bytes that are to be compressed are contained

in the argument data. Level takes an integer value,

range to -1 or 0 to 9. The value or the level of

compression is determined by this parameter, level

1 is yields the lowest level and is fastest. Highest

level of compression is by level 9, it is the slowest.

The default is level 6 which is represented by the

value -1. There is a balance between speed and

compression with the value -1. There is no

compression yielded by level 0. We make use of

the compressobj() function to manage large data

streams, which return a compression object.

Following is the syntax:

https://en.wikipedia.org/wiki/Gzip

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24582

compressobj (level=-1, method=DEFLATED,

wbits=15, memLevel=8,

strategy=Z_DEFAULT_STRATEGY[, zdict])

The two functions compressobj() and compress(),

has differences in between, the wbits arguments,

the window size controller, window size is

controlled by it, is the difference, apart from the

data parameter(whether the header and trailer are

included in the output.). The algorithm used for

compression is represented by the method

argument. The only method defined in the RFC

1950, the only possible current value is

DEFLATED. Compression tuning is related to the

strategy argument.

4.2 File Compression

Function compress() to compress the data in a file.

Image file, we will try to compress, a “pic1.png”

(make sure image is in the folder same as python

file).

Below is the code:

import zlib

o_data = open('pic1.jpg', 'rb').read()

compressed_data = zlib.compress(o_data,

zlib.Z_BEST_COMPRESSION)

ratio = (float(len(o_data)) - float(len(c_data))) /

float(len(o_data))

print('Compressed: %d%%' % (100.0 * ratio))

#o_data is original data

#ratio is compressed ratio

#c_data is compressed data

Constant Z_BEST_COMPRESSION is being used

in the code above, in zlib.compress(..) line. This

algorithm has to offer this level of best

compression. We need to calculate the ratio of the

length of the compress data to length of the

original data.

Output-

 $ python compress_file.py

Compressed: 8%

In order to compress the mp4s, we make use of

ffmpy library. ffmpy is a Python library that

provides access to the ffmpeg command line

utility. ffmpeg is a command-line application that

can perform transformations on video files,

including video compression, which is the most

commonly requested feature of ffmpeg.

ffmpeg -i input.mp4 -vcodec libx264 -crf 20

output.mp4

The name of the input file is specified by the -i

clause that proceeds ffmpeg.

After the input file name, the command specifies

output options. In this case, the output options

specify the video codec to use and the constant

rate factor, or CRF, to use to compress the video

file. The CRF, which, in this case, is 20, can range

from 18 to 24, where a higher number will

compress the output to a smaller size. The last part

of the instruction is the name of the resulting

compressed file.

If our input and output file names are stored in

variables input_name and output_name, then we

could set up a dictionary called inp to store the

parameters to apply to the input file, and a

dictionary called outp to apply to the output file.

Here is the code:

 inp={input_name:None}

outp = {output_name:’-vcodec libx264 -crf

%d’%crf}

We pass these dictionaries to the FFmpeg function

defined in the ffmpy library to create an FFmpeg

object.

ff=ffmpy.FFmpeg(inputs=inp,outputs=outp)

ff.run()

For debugging purposes, it might be handy to see

what corresponding command-line instruction the

FFmpeg object is executing.

Code to take one mp4 file and compress it using a

user-specified constant rate factor:

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24583

import ffmpy

input_name = input(“Input file name: “)

crf = int(input(“Enter constant rate factor

between 18 and 24: “))

output_name = input(“Output file name: “)

inp={input_name:None}

outp = {output_name:’-vcodec libx264 -crf

%d’%crf}

ff=ffmpy.FFmpeg(inputs=inp,outputs=outp)

print(ff.cmd) # just to verify that it produces

the correct ffmpeg command

ff.run()

print(“done!”)

5. Conclusion

During the transmission, for giving an efficient data

transfer and data security maintenance, many

techniques are exploited that include video

compression and embedding. This paper includes

various compression techniques for image,

techniques like SPIHT, fuzzy concepts and PCA

based methods. These techniques are analyzed and

studied. There are algorithms such as digital

watermarking, digital embedding and data hiding,

each are discussed in detail. There is loss of pixel

information during the transformation, compressed

images are not efficiently restored by the

compression techniques already existing. We don’t

receive any satisfying image or video security, the

computational work complexity and time

complexity, increases in the traditional compression

algorithm. We propose a framework to consider all

into account, all the issues related, with a block

code formation. There is an exploitation of block

wise pixel grouping technique, it is done to perform

the compression.

 The framework includes all the codes and

algorithms needed for the lossless compression.

Python libraries that are already existing and

making work with frames and video rates in the

background can increased in terms of the

efficiency. There is a splitting into multiple patches

of the images involved in the process of

compression. For each of the patch, location

(recurrent) of the pixel is found. Prior to the pixel

value, the estimated locations of each pixel is

placed, i.e. for the entire image. We make us of the

LSB algorithm to perform the embedding process,

after each frame has been compressed. MSE,

PSNR, SSIM, are few of the metrics that will

determine the superiority and the relevance of the

framework proposed.

All the above algorithms do not contain in any

python framework, there are libraries that can be

imported to perform specific tasks, we intent to

provide a whole new study.

 6. References

[1] Mallaiah, S. K. Shabbir, T. Subhashini.

2012. "An Spiht Algorithm With Huffman

Encoder For Image Compression

And Quality Improvement Using Retinex

Algorithm." International Journal Of

Scientific & Technology Research no. 1

(5):45-49.

[2] Chopra, Deepshikha, Preeti Gupta, Gaur

Sanjay, and Anil Gupta. 2012. "LSB based

digital image watermarking for gray scale

image." IOSR Journal of Computer

Engineering (IOSRJCE) ISSN:2278-0661.

[3] Deb, Kaushik, Md Sajib Al-Seraj,

Mohammed Moshiul Hoque, and Md Iqbal

Hasan Sarkar. 2012. Combined DWT-DCT

based digital image watermarking technique

for copyright protection. Paper read at 7th

International Conference on Electrical &

Computer Engineering (ICECE).

[4] Gurpreet Kaur, Kamaljeet Kaur. 2013.

"Image Watermarking Using LSB."

International Journal of Advanced Research

in Computer Science and Software

Engineering no. 3 (4):858-861.

[5] Kashyap, Nikita, and GR Sinha. 2012.

"Image watermarking using 3-level discrete

wavelet transform (DWT)." International

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24584

Journal of Modern Education and

Computer Science no. 4 (3):50.

[6] Khalilian, Hanieh, and Ivan V Bajic. 2013.

"Video watermarking with empirical PCA-

based decoding." IEEE Transactions on

Image Processing no. 22 (12):4825-4840.

[7] Khan, Asifullah, Ayesha Siddiqa,

Summuyya Munib, and Sana Ambreen

Malik. 2014. "A recent survey of reversible

watermarking techniques." Information

sciences no. 279:251-272.

[8] Li, Y., H. x. Chen, and Y. Zhao. 2010. A

new method of data hiding based on H.264

encoded video sequences. Paper read at

IEEE 10th International Conference on

Signal Processing (ICSP), 24-28 Oct. 2010.

[9] Ma, Xiaojing, Zhitang Li, Hao Tu, and

Bochao Zhang. 2010. "A data hiding

algorithm for H. 264/AVC video streams

without intra-frame distortion drift." IEEE

Transactions on Circuits and Systems for

Video Technology no. 20 (10):1320-1330.

[10] Navnidhi Chaturvedi, Dr.S.J.Basha. 2012.

"Comparison of Digital Image

watermarking Methods DWT & DWTDCT

on the Basis of PSNR." International

Journal of Innovative Research in Science,

Engineering and Technology no. 1 (2):147-

153.

[11] Pan, I-Hui, Ping Sheng Huang, and Te-Jen

Chang. 2013.

[12] "DCT-Based Watermarking for Color

Images via TwoDimensional Linear

Discriminant Analysis." In Information

Technology Convergence, 57-65. Springer.

[13] Sadashivappa, K.V.S Anand Babu, Dr.

Srinivas 2011. "Color Image Compression

using SPIHT Algorithm." International

Journal of Computer Applications no. 16

(7):34-42.

[14] Seema Kalangi, Veeraiah Maddu,

Sreenivasa Ravi

[15] Kavuluri. 2013. "A Novel Approach

of Low Complexity DWT/PCA

Based Video Compression Method."

International Journal of Engineering

Science and Innovative Technology

(IJESIT) no. 2 (3):159-168.

[16] Senthil Nathan.M , Pandiarajan.K,

Baegan.U. 2013. "Digital Image

Watermarking Basics " IOSR Journal of

[17] Electronics and Communication

Engineering (IOSRJECE) no. 8 (1):07-11.

[18] Shanableh, T. 2012. "Data Hiding in MPEG

Video Files Using Multivariate Regression

and Flexible Macroblock Ordering." IEEE

Transactions on Information Forensics and

Security no. 7 (2):455-464. doi:

10.1109/TIFS.2011.2177087.

[19] Shivani Khosla, Paramjeet Kaur 2014.

"Secure Data Hiding Technique Using

Video Steganography and Watermarking."

International Journal of Computer

Applications no. 95 (20):7-12.

[20] Singh, Ranjeet Kumar, Dilip Kumar Shaw,

and M Javed Alam. 2015. "Experimental

Studies of LSB Watermarking with

Different Noise." Procedia Computer

Science no. 54:612-620.

[21] Suganya.G, Mahesh.K. 2014. "A Survey:

Various Techniques of Video

Compression." International Journal of

Engineering Trends and Technology

(IJETT) no. 7 (1):10-12.

[22] Suhail, M. A., and M. S. Obaidat. 2003.

"Digital watermarking-based DCT and

JPEG model." IEEE Transactions on

Instrumentation and Measurement no. 52

(5):1640-1647. doi:

10.1109/TIM.2003.817155.

[23] Thakur, S, Nilesh Kumar Dewangan, and

Kavita Thakur. 2014. A Highly Efficient

Gray Image Compression Codec Using

Neuro Fuzzy Based Soft Hybrid JPEG

Standard. Paper read at Proceedings of

Second International Conference “Emerging

Research in Computing, Information,

Communication and Applications”

ERCICA.

[24] Thakur, Vikrant Singh, and Kavita Thakur.

2014. Design and Implementation of a

highly efficient gray image compression

Manas Malik, IJECS Volume 8 Issue 3 March 2019 Page No. 24575-24585 Page 24585

codec using fuzzy based soft hybrid JPEG

standard. Paper read at International

Conference on Electronic Systems, Signal

Processing and Computing Technologies

(ICESC).

[25] Wong, KokSheik, Kiyoshi Tanaka, Koichi

Takagi, and Yasuyuki Nakajima. 2009.

"Complete video qualitypreserving data

hiding." IEEE Transactions on Circuits and

Systems for Video Technology no. 19

(10):14991512.

[26] Xu, Dawen, Rangding Wang, and Yun Q

Shi. 2014. "Data hiding in encrypted H.

264/AVC video streams by codeword

substitution." IEEE Transactions on

Information Forensics and Security no. 9

(4):596-606.

[27] Ray Klump, Professor and chair of

Mathematics and Computer Science

Director, Master of Science in Information

Security Lewis University,

http://www.lewisu.edu/experts/wordpress/in

dex.php/compressing-mp4-files-listing-

directory-contents-and-copying-files-to-a-

remote-server-in-python/

[28] Scott Robinson,

https://stackabuse.com/python-zlib-library-

tutorial/

