
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 9 September 2018, Page No. 24206-24213

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i9.02

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24206

Software Effort Prediction with Algorithm Based Frameworks

Shrikant Pawar
*1, 2

 & Aditya Stanam
3

1
Department of Computer Science, Georgia State University, 34 Peachtree Street, 30303, Atlanta, GA, USA.

2
Department of Biology, Georgia State University, 34 Peachtree Street, 30303, Atlanta, GA, USA.

3
University of Iowa, College of Public Health, UI Research Park, #219 IREH, Iowa City, Iowa 52242-5000,

USA

Abstract

The need for accurate effort predictions for projects is one of the most critical and complex issues in the

software industry. Effort estimation is an essential activity in planning and monitoring software project

development to deliver the product on time and within budget. The competitiveness of software

organizations depends on their ability to predict the effort required for developing software systems

accurately. Several algorithmic approaches have been proposed in the literature to support software

engineers in improving the accuracy of their estimations. The decision of how to select different techniques

considering the characteristics of a specific dataset through genetic algorithms could be viewed as a search-

based problem for software engineering. Some groups use well known evolutionary learning algorithms

(MMRE, PRED (25), PRED (50) and PRED (75), while others use machine learning methods like artificial

neural network and fuzzy logic. Analogy estimation is also being utilized for estimating software effort,

which has been shown to predict accurate results consistently. Genetic frameworks are becoming famous for

selecting best learning schemes for effort prediction using the elitism techniques, utilizing some well-known

parameters like Spearman's rank correlation, the median of the magnitude of relative error (MdMRE), and

mean of the absolute residuals (MMAR). The technique of using fuzzy rough sets for the analysis is also

becoming popular. This article aims to compare various algorithm based frameworks for predicting software

development effort which  can generate the best-optimized software product.

Keywords: Machine Learning; Software Effort; Prediction; Algorithm.

Introduction

Effort estimation is a critical activity for planning

and monitoring software project development to

deliver the product on time and within budget.

The competitiveness of software organizations

depends on their ability to predict the effort

required for developing software systems

accurately. Both over or underestimates can

negatively affect the outcome of software projects.

Estimation is the process of finding an estimate, or

approximation, which is a value that can be used

for some purpose even if the input data is

incomplete, uncertain, or unstable.
[1]

 Estimation

determines how much money, effort, resources,

and time it will take to build a specific system. It

is based on past data or experience, available

documents, assumptions, and identified risks. The

four necessary steps in software project estimation

are to estimate the size of the development

product, determine the effort in person-months or

person-hours, expect the schedule in calendar

months, and estimate the project cost in agreed

currency.
[1]

 Estimation can be done during

acquiring a project, planning the project, or the

execution of the project as the need arises. Project

scope must be understood before the estimation

process begins. It is always helpful to have

historical project data. Planning requires technical

managers and the software team to make an initial

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24207

commitment leading to responsibility and

accountability. Use of at least two estimation

techniques to arrive at the estimates and

reconciliation of the resulting values is highly

recommended. Plans should generally be

iteratively allowing adjustments in future.

Figure 1: Summary of software effort prediction

techniques discussed in the article.

Figure 1 summarizes the software effort

prediction techniques discussed in the article. The

most widely used project estimation approach is

the decomposition technique, which mostly is a

divide and conquer approach. Size, effort, and

cost estimation are performed in a stepwise

manner by breaking down a project into

significant functions or related software

engineering activities. Before an evaluation is

completed, we need to understand the scope of

software to estimate the software size.
[2]

 It

generally starts with the statement of scope and

decomposes the software into functions that can

each be evaluated individually. The size of each

service is then calculated. Combine function

estimates are used to produce an overall rating for

the entire project.

Estimation is usually done with effort (in person

hours/days) required to complete each task, and

the combined effort to produce an estimate for the

activity. The cost units (i.e., cost/unit effort) are

then determined for each event from the database

to compute the total attempt.
[2]

 Combine effort

and cost estimates for each activity to produce an

overall effort, and cost estimate for the entire

project can then be calculated. Next,

reconciliation of estimates is performed by

comparing the resulting values from previous

steps to define if the scope of the project is

adequately understood. The range can also be

misinterpreted, so the function breakdown should

be accurate. The historical data used for the

estimation techniques are appropriate for the

application, or is obsolete is needed to be verified

before estimation.
[2]

Software estimation requires accuracy, which is

an indication of how close something is to reality.

Some important factors that can affect the

accuracy of estimates are the accuracy of input

data, calculation accuracy, the accuracy of

historical data used to calibrate the model

matching. The predictability of organization‟s

software development process, the stability of

both the product requirements and the

environment that supports the software

engineering efforts are also significant.
[3]

 Reliable

estimates can be achieved by base estimates from

similar projects that have already been completed,

using relatively simple decomposition techniques

to generate project cost and effort estimates. To

ensure accuracy, it's always advisable to perform

estimation using at least two methods for

comparing the results.

There can be many estimation issues; one example

is an estimation of schedules by project managers

with neglecting project size. This may arise

because of the timelines set by the top

management or the marketing team. It then

becomes difficult to estimate the schedules to

accommodate the scope changes. It is also

important to note all the assumptions in the

estimation sheet. Reasonable estimates may have

inherent assumptions, risks, and uncertainty, and

may still be treated as accurate. The best way of

expressing views is as a range of possible

outcomes. For example, the project will take 5 to

7 months instead of stating a particular date for

completion.
[3]

 An uncertainty as an accompanying

probability value can also be included. For

example, a 90% probability that the project will be

completed on or before a definite date is also a

good deliverance strategy.
[3]

 If there exists a

schedule constraint by management or client,

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24208

negotiation on the scope and functionality to be

delivered can be adopted. Failure in

accommodating contingency in the final estimate

is likely to cause issues. It‟s been observed that

when resource assignment is more than 80%

utilization, there are frequent occurrences in

deliverance slippages.
[3]

During estimation, it is recommended to ask other

people's experiences and put users own

experiences at the task. Resources working on

multiple projects take longer to complete tasks

because of the time lost switching between these

projects, so it is always recommended to include

management time in any estimate.
[3]

 Contingency

building for problem-solving, meetings and other

unexpected events to allow enough time to do

proper project estimation is advisable. Rushed

estimates can be inaccurate and are considered as

high-risk estimates. For large development

projects, the estimation step is usually regarded as

a mini-project.

Usage of documented data from organization‟s

similar past projects can result in the most

accurate estimation. If the organization has not

kept historical data, immediate documentation is

advisable. Developer-based opinions can also be

used for evaluations. Further, utilizing several

different people to estimate and use several

different estimation techniques will improve

estimation accuracies. Reconciliation of the

estimates can then be performed to observe the

convergence or spread amongst the forecast.

Confluence states a reasonable view. Wideband-

Delphi technique can also be utilized to gather and

discuss estimates using a group of people to

produce an accurate and unbiased assessment.
[4]

The final step is to perform a re-estimation of the

project throughout its lifecycle. Software effort

models and effort estimates help project managers

to allocate resources, control costs and improve

current practices, leading to projects that are

finished on time and within budget. In the context

of software development and maintenance, these

issues are crucial, and very challenging, given that

projects have short schedules and a highly fluidic

scope.

Discussion

Several algorithmic approaches have been

proposed to support software engineers in

improving the accuracy of their estimations. These

methods often produce a point estimate of the

effort required to develop a new project.

i. Early effort estimation techniques:

Prediction is a necessary part of an

effective process, whether it be authoring,

design, testing, or development as a whole.

A prediction process involves the

identification of measures that are believed

to influence the effort required to develop

a new application.
[4]

 The formulation of

theories about the relationship between the

selected measures and effort is needed.

The capturing of historical data (e.g. size

and actual effort) about past projects

historical data or even past development

phases within the same project helps

immensely in prediction. The purpose of

estimating effort is to predict the amount

of effort to accomplish a given task, based

on knowledge of other project

characteristics that are believed to be

related to effort. Project characteristics

(independent variables) are the inputs,

while its effort (dependent variable) is the

output we wish to predict. For example, a

web company may find that to predict the

effort necessary to implement a new web

application will require following inputs:

estimated number of new web pages, total

number of developers who will help

develop the new web application,

developers, average number of years of

experience with the development tools

employed, and the number of

functions/features to be offered by the new

web application. Figure no 2 illustrates the

explained effort prediction process.

ii. Current methods for effort estimation:

Several techniques for effort estimation

have been proposed, we have summarized

the most important and effective

techniques in this article.

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24209

Figure 2: Illustration of software effort prediction

process.

1. Expert opinion.

2. Algorithmic models: Regression,

COnstructive COst MOdel (COCOMO),

Multi-objective software effort estimation.

3. Artificial intelligence: Fuzzy logic.

4. Case-based reasoning (CBR).

1. Expert opinion: Expert opinion represents the

process of estimating effort by subjective means

and is often based on previous experience from

developing/managing similar projects. It has been

and still is widely used in software and web

development. The drawback of this technique is

that it is challenging to quantify and to determine

factors that have been used to derive an estimate.

However, studies show that this technique can be

a useful estimating tool when used in combination

with other less subjective methods (e.g.,

algorithmic models). An expert looks at the

estimated size and cost drivers related to a new

project for which effort needs to be determined.

Based on the data obtained data retrieval on past

finished projects for which actual attempt is

known is received and a subjective effort

estimation of the new plan is performed. Deriving

accurate effort estimation is more likely to occur

when there are completed projects similar to the

one having its estimated size and cost drivers.

2. Algorithmic models: There are several well-

known models, the most effective being

regression, COCOMO, and Multi-objective

software effort estimation technique.

A. COCOMO model: An example of an

algorithmic model that uses equation 1 is the

COCOMO model, where parameters and b are

based on the type of project under construction,

and the ‘Effort Adjustment Factor’ (EAF) is based

on 15 cost drivers that are calculated and then

summed. Parameters and b are chosen based on

criteria‟s like the type of software project being

developed. ‘EstSizeNewproj’ is the estimated size

for the new project.
[4]

 The COCOMO model is an

example of a generic algorithmic model, and is

believed to be applicable to any type of software

project with suitable calibration or adjustment to

local circumstances.

Equation 1
[4]

:

This technique attempts to formalize the

relationship between effort and one or more

project characteristics. The central project

characteristic used in such a model is usually

taken to be some notion of software size (example

the number of lines of source code, number of

web pages, or the number of links).
[5]

 This

formalization is often translated as an equation

such as that shown by equation 1. Equation 1

shows that size is the primary factor contributing

to effort and can be adjusted according to an EAF,

calculated from cost drivers (example developers,

experience, tools).
[4]

B. Regression based model: Regression-based

algorithmic models are most suitable to local

circumstances such as “in-house” analysis as they

are derived from past data that often represents

projects from the company itself. Regression

analysis used to generate regression-based

algorithmic models provides a procedure for

determining the „best‟ straight-line fit to a set of

project data that represents the relationship

between effort (dependent variable) and the

project characteristics (example size, experience,

tools, the predictor or independent variables).
[6]

Two of the most widely used techniques are

multiple regression (MR) and stepwise regression

(SWR).
[4]

 The difference between both is that MR

obtains a regression line using all the independent

variables at the same time, whereas SWR is a

technique that examines different combinations of

independent variables, looking for the best

grouping to explain the highest amount of

variation in the effort. The past data is used to

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24210

generate a cost model, which then receives input

as the values for the new project characteristics.

Eventually, this model generates estimated effort.

Equation 2 explains a simple linear regression

equation, where Yi is the dependent variable, B0,

B1, Xi and Ei are population Y-intercept, slope

coefficient, independent variable and random

error respectively.

Equation 2
[4]

:

C. Multi-objective software effort estimation

algorithm: It combines confidence interval

analysis and assessment of mean absolute error.

Equations 3-7 explains these thresholds for

algorithm implementation.

Equations 3-7
[1]

:

In the above equations, fi represents the value of

the ith project feature with ci as its coefficient, C

represents a constant, while opi represents the ith

mathematical operator of the model. To compare

the performance of prediction models, usage of

Mean of Magnitude of Relative Error (MMRE) or

Mean Absolute Error (MAE).
[4]

 MMRE is used to

have a cumulative measure of the error. pred(25)

measures the percentage of the estimates whose

error is less than l% and it is usually set at 25. For

calculating MAE and Standardized Accuracy

(SA), N is the number of projects used for

evaluating the performance, REi and EEi are the

actual and estimated efforts, MAEPj is the MAE

of the approach being evaluated and MAErguess is

the MAE of a large number of random guesses.

This algorithm is tested on three different

alternative formulations, baseline comparators and

current state-of-the-art effort estimators. It has

been applied to five real-world datasets from the

PROMISE repository, involving 724 different

software projects. This algorithm outperforms the

baseline, state-of-the-art algorithms used for large

scale datasets. The accuracy results from this

algorithm are promising, significant and with

improved accuracy (Table 1).

Table1: Depicts the accuracy results from this multi-objective software effort estimation algorithm

(CoGEE) (Reproduced from Wang et. al. 2016).

Class SA Desharnais SA Finnish SA Maxwell SA Miyazaki SA

CoGEE 0.48 CoGEE 0.47 CART 0.52 CoGEE 0.56 CoGEE 0.90

GA-SAE 0.48 LR 0.46 CoGEE 0.45 GA-SAE 0.56 LR 0.76

GA-Ct 0.45 GA-SAE 0.45 GA-Ct 0.45 CART 0.51 GA-Ct 0.66

CART 0.40 CART 0.38 LR 0.42 CBB3 0.51 GA-SAE 0.66

CBB3 0.40 CBB3 0.34 CBB3 0.41 CBB1 0.48 N8GAII-UO 0.60

Median 0.38 Median 0.33 GA-SAE 0.41 CBB2 0.47 CBB2 0.56

CBB2 0.35 CBB2 0.32 CBB2 0.38 N8GAII-UO 0.41 CBB3 0.56

CBB1 0.29 CBB1 0.27 CBB1 0.31 LR 0.38 CBB1 0.55

Mean 0.25 Mean 0.26 N8GAII-UO 0.19 Median 0.33 Media 0.49

LR 0.23 GA-Ct 0.09 Mean 0.18 Mean 0.28 CART 0.46

N8GAII-UO -1.7 N8GAII-UO 0.08 Median 0.14 GA-Ct 0.26 Mean 0.30

3. Artificial intelligence techniques: Artificial

intelligence techniques have been used as a

complement to, or as an alternative to the previous

categories. Some important of them include fuzzy

logic, regression trees and neural networks.
[7,11]

 It

starts with selecting datasets from the database

according the procedure and characteristics,

followed by executing the three frameworks,

genetic, exhaustive and random guessing for

collecting the performance measures.

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24211

Figure 3: Depicts the workflow of applying

machine learning technique study (Reproduced

from Murillo et. al. 2017).

The genetic and exhaustive frameworks should

consist of attribute selectors and learning

algorithms. Execution of the genetic framework

should be done with different configurations

including 3 levels of generations, population,

mutation and crossover.
[8]

 This technique have

shown to have a prediction accuracy of 45-80%.

Figure 3 depicts the workflow of applying

artificial intelligence technique study. Some

groups have utilized evolutionary algorithms for

software effort estimation. K-nearest neighbor

(KNN) is used to clean noisy data followed by

training and validation.
[9]

 This is done to obtain a

clean dataset as most of the effort estimation

datasets consists of missing values.
[10]

 Fuzzy

learning is based on genetic programming and

simulated annealing. Fuzzy algorithms, FRSBM,

GFSGPG-R, GFS-GSP-R, and GFS-SAP-Sym-R

are applied to the tested datasets.
[5]

 Adaptive

Neuro Fuzzy Inference System (ANFIS) can be

calculated with equation 8.

Equation 8
[5]

:

In equation 8, RE is the relative error, A is

estimate of preset attractiveness and E is the error

factor. By comparing MRE, PRED and RE values,

GFS-SAP-Sym-R is found to be an accurate

estimator for dataset of any size (small, medium

and large). Ensemble-R has shown worst

performance for all 3 datasets (Table 2). Budget of

a project can be estimated correctly if applicability

of a particular evolutionary technique under

various circumstances is known. If the dataset is

of small, medium or large size, selection of

evolutionary technique can be done accordingly.
[5]

Table2: Characteristics of datasets used with MMRE and PRED values of fuzzy logic algorithm application

(Reproduced from Wang et. al. 2016).

Dataset No. of

observations

No. of features No. of numeric

features

No. of categorical

features

Desharnais 82 7 7 0

Maxwell 62 25 3 22

Muyazaki 48 8 7 1

Dataset Method MMRE PRED(25)

Desharnais Ensemble-R 0.59 0.16

FRSBM 0.38 0.28

GFS-GPG-R 0.28 0.34

GFS-GSP-R 0.29 0.33

GFS-SAP-Sym-R 0.29 0.33

Maxwell Ensemble-R 1.17 0.12

FRSBM 0.58 0.25

GFS-GPG-R 0.57 0.11

GFS-GSP-R 0.27 0.30

GFS-SAP-Sym-R 0.29 0.30

Muyazaki Ensemble-R 0.75 0.12

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24212

FRSBM 0.41 0.20

GFS-GPG-R 0.61 0.16

GFS-GSP-R 0.29 0.31

GFS-SAP-Sym-R 0.27 0.33

4. Case-based reasoning (CBR): Case-based

reasoning (CBR) provides estimates by comparing

the current problem to be estimated against a

library of historical information from completed

projects with a known effort (case base).
[9]

Characterizing a new project p, for which an

estimate is required, with attributes (features)

common to those completed projects stored in the

case base. In terms of software cost estimation,

features represent size measures and cost drivers.

Use of this characterization as a basis by finding

similar (analogous) completed projects, for which

effort is known. This process can be achieved by

measuring the „distance‟ between two projects,

based on the values of the number of features (k)

for these projects.
[12]

 Some important features of

CBR are, feature subset selection determining the

optimum subset of features that yield the most

accurate estimation is utilized. Similarity

measures the level of similarity between different

cases, with several similarity measures proposed

in the literature. Scaling also known as

standardization, represents the transformation of

attribute values according to a defined rule, such

that all attributes present values within the same

range and hence have the same degree of

influence on the results. Number of analogies

refers to the number of most similar cases that will

be used to generate the estimation. Analogy

adaptation, once the similar cases have been

selected the next step is to decide how to generate

the estimation for project. Adaptation rules are

used to adapt estimated effort, according to a

given criterion such that it reflects the

characteristics of the target project more closely.

Conclusion:

Software project estimation is important to

manage cost and resources of organization. There

are different ways of performing estimation

(expert opinion, algorithmic models, artificial

intelligence, case-based reasoning (CBR). By

comparing all the mentioned techniques, the

artificial intelligence approach seems to be the

most accurate and upcoming mode of prediction.

Supporting Information

No external funding has been utilized for this

article.

Author Information

Corresponding Author:

Shrikant Pawar

Author Contributions:

SP and AS did the background research, writing,

and critical revisions of this manuscript.

Acknowledgments

Not applicable.

References

[1] Sarro F, Petrozziello A, Harman M (2016).

Multi-objective Software Effort

Estimation. IEEE/ACM 38th IEEE

International Conference on Software

Engineering.

[2] Huang J, Li YF, Xie M (2015). An

empirical analysis of data preprocessing

for machine learning-based software cost

estimation. Inf Softw Technol 67: 108–

127.

[3] Murillo-Morera J, Quesada C, López C,

Herrera Jenkins. (2017). A genetic

algorithm based framework for software

effort prediction. Journal of Software

Engineering Research and Development.

5:4.

[4] Gabrani G, Saini N (2016). Effort

Estimation Models Using Evolutionary

Learning Algorithms for Software

Development. Symposium on Colossal

Data Analysis and Networking (CDAN).

Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213 Page 24213

[5] Rizkiana R, Riyanarto S, Rochimah S

(2017). Accuracy Improvement of the

Estimations Effort in Constructive Cost

Model II Based on Logic Model of Fuzzy.

Advanced Science Letters. 23. 2478-2480.

[6] Mudunuru M, Karra S, Viswanathan H

(2017). Regression-based reduced-order

models to predict transient thermal output

for enhanced geothermal systems.

Geothermics. 70. 192-205.

[7] Schmidhuber J (2015). Deep Learning in

Neural Networks: An Overview. Technical

Report IDSIA-03-14 / arXiv: 1404.7828

v4.

[8] Wang R, Peng P, Xu L (2016). A Novel

Algorithm for Software Development Cost

Estimation Based on Fuzzy Rough Set.

Journal of Engineering Science and

Technology Review.

[9] Wang Z, Hamza W, Song L (2017). k-

Nearest Neighbor Augmented Neural

Networks for Text Classification.

Computation and Language.

arXiv:1708.07863v1.

[10] Sangwan OP (2017). Software effort

estimation using machine learning

techniques. 7th International Conference

on Cloud Computing, Data Science &

Engineering - Confluence, Noida. 92-98.

[11] Rao PS, Reddi KK, Rani R (2017).

Optimization of neural network for

software effort estimation. International

Conference on Algorithms, Methodology,

Models and Applications in Emerging

Technologies (ICAMMAET), Chennai. 1-

7.

[12] Althoff K (2001). Case Based Reasoning.

Handbook of Software Engineering and

Knowledge Engineering. 549-587.

