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Abstract 

The need for accurate effort predictions for projects is one of the most critical and complex issues in the 

software industry. Effort estimation is an essential activity in planning and monitoring software project 

development to deliver the product on time and within budget. The competitiveness of software 

organizations depends on their ability to predict the effort required for developing software systems 

accurately. Several algorithmic approaches have been proposed in the literature to support software 

engineers in improving the accuracy of their estimations. The decision of how to select different techniques 

considering the characteristics of a specific dataset through genetic algorithms could be viewed as a search-

based problem for software engineering. Some groups use well known evolutionary learning algorithms 

(MMRE, PRED (25), PRED (50) and PRED (75), while others use machine learning methods like artificial 

neural network and fuzzy logic. Analogy estimation is also being utilized for estimating software effort, 

which has been shown to predict accurate results consistently. Genetic frameworks are becoming famous for 

selecting best learning schemes for effort prediction using the elitism techniques, utilizing some well-known 

parameters like Spearman's rank correlation, the median of the magnitude of relative error (MdMRE), and 

mean of the absolute residuals (MMAR). The technique of using fuzzy rough sets for the analysis is also 

becoming popular. This article aims to compare various algorithm based frameworks for predicting software 

development effort which  can generate the best-optimized software product. 
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Introduction 

Effort estimation is a critical activity for planning 

and monitoring software project development to 

deliver the product on time and within budget. 

The competitiveness of software organizations 

depends on their ability to predict the effort 

required for developing software systems 

accurately. Both over or underestimates can 

negatively affect the outcome of software projects. 

Estimation is the process of finding an estimate, or 

approximation, which is a value that can be used 

for some purpose even if the input data is 

incomplete, uncertain, or unstable.
[1]

 Estimation 

determines how much money, effort, resources, 

and time it will take to build a specific system. It 

is based on past data or experience, available 

documents, assumptions, and identified risks. The 

four necessary steps in software project estimation 

are to estimate the size of the development 

product, determine the effort in person-months or 

person-hours, expect the schedule in calendar 

months, and estimate the project cost in agreed 

currency.
[1]

 Estimation can be done during 

acquiring a project, planning the project, or the 

execution of the project as the need arises. Project 

scope must be understood before the estimation 

process begins. It is always helpful to have 

historical project data. Planning requires technical 

managers and the software team to make an initial 
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commitment leading to responsibility and 

accountability. Use of at least two estimation 

techniques to arrive at the estimates and 

reconciliation of the resulting values is highly 

recommended. Plans should generally be 

iteratively allowing adjustments in future. 

 
Figure 1: Summary of software effort prediction 

techniques discussed in the article. 

Figure 1 summarizes the software effort 

prediction techniques discussed in the article. The 

most widely used project estimation approach is 

the decomposition technique, which mostly is a 

divide and conquer approach. Size, effort, and 

cost estimation are performed in a stepwise 

manner by breaking down a project into 

significant functions or related software 

engineering activities. Before an evaluation is 

completed, we need to understand the scope of 

software to estimate the software size.
[2]

 It 

generally starts with the statement of scope and 

decomposes the software into functions that can 

each be evaluated individually. The size of each 

service is then calculated. Combine function 

estimates are used to produce an overall rating for 

the entire project. 

Estimation is usually done with effort (in person 

hours/days) required to complete each task, and 

the combined effort to produce an estimate for the 

activity. The cost units (i.e., cost/unit effort) are 

then determined for each event from the database 

to compute the total attempt.
[2]

 Combine effort 

and cost estimates for each activity to produce an 

overall effort, and cost estimate for the entire 

project can then be calculated. Next, 

reconciliation of estimates is performed by 

comparing the resulting values from previous 

steps to define if the scope of the project is 

adequately understood. The range can also be 

misinterpreted, so the function breakdown should 

be accurate. The historical data used for the 

estimation techniques are appropriate for the 

application, or is obsolete is needed to be verified 

before estimation.
[2]

 

Software estimation requires accuracy, which is 

an indication of how close something is to reality. 

Some important factors that can affect the 

accuracy of estimates are the accuracy of input 

data, calculation accuracy, the accuracy of 

historical data used to calibrate the model 

matching. The predictability of organization‟s 

software development process, the stability of 

both the product requirements and the 

environment that supports the software 

engineering efforts are also significant.
[3]

 Reliable 

estimates can be achieved by base estimates from 

similar projects that have already been completed, 

using relatively simple decomposition techniques 

to generate project cost and effort estimates. To 

ensure accuracy, it's always advisable to perform 

estimation using at least two methods for 

comparing the results. 

There can be many estimation issues; one example 

is an estimation of schedules by project managers 

with neglecting project size. This may arise 

because of the timelines set by the top 

management or the marketing team. It then 

becomes difficult to estimate the schedules to 

accommodate the scope changes. It is also 

important to note all the assumptions in the 

estimation sheet. Reasonable estimates may have 

inherent assumptions, risks, and uncertainty, and 

may still be treated as accurate. The best way of 

expressing views is as a range of possible 

outcomes. For example, the project will take 5 to 

7 months instead of stating a particular date for 

completion.
[3]

 An uncertainty as an accompanying 

probability value can also be included. For 

example, a 90% probability that the project will be 

completed on or before a definite date is also a 

good deliverance strategy.
[3]

 If there exists a 

schedule constraint by management or client, 



Shrikant Pawar, IJECS Volume 7 Issue 9 September 2018 Page No. 24206-24213                     Page 24208 

negotiation on the scope and functionality to be 

delivered can be adopted. Failure in 

accommodating contingency in the final estimate 

is likely to cause issues. It‟s been observed that 

when resource assignment is more than 80% 

utilization, there are frequent occurrences in 

deliverance slippages.
[3]

 

During estimation, it is recommended to ask other 

people's experiences and put users own 

experiences at the task. Resources working on 

multiple projects take longer to complete tasks 

because of the time lost switching between these 

projects, so it is always recommended to include 

management time in any estimate.
[3]

 Contingency 

building for problem-solving, meetings and other 

unexpected events to allow enough time to do 

proper project estimation is advisable. Rushed 

estimates can be inaccurate and are considered as 

high-risk estimates. For large development 

projects, the estimation step is usually regarded as 

a mini-project. 

Usage of documented data from organization‟s 

similar past projects can result in the most 

accurate estimation. If the organization has not 

kept historical data, immediate documentation is 

advisable. Developer-based opinions can also be 

used for evaluations. Further, utilizing several 

different people to estimate and use several 

different estimation techniques will improve 

estimation accuracies. Reconciliation of the 

estimates can then be performed to observe the 

convergence or spread amongst the forecast. 

Confluence states a reasonable view. Wideband-

Delphi technique can also be utilized to gather and 

discuss estimates using a group of people to 

produce an accurate and unbiased assessment.
[4]

 

The final step is to perform a re-estimation of the 

project throughout its lifecycle. Software effort 

models and effort estimates help project managers 

to allocate resources, control costs and improve 

current practices, leading to projects that are 

finished on time and within budget. In the context 

of software development and maintenance, these 

issues are crucial, and very challenging, given that 

projects have short schedules and a highly fluidic 

scope. 

Discussion 

Several algorithmic approaches have been 

proposed to support software engineers in 

improving the accuracy of their estimations. These 

methods often produce a point estimate of the 

effort required to develop a new project.  

i. Early effort estimation techniques: 

Prediction is a necessary part of an 

effective process, whether it be authoring, 

design, testing, or development as a whole. 

A prediction process involves the 

identification of measures that are believed 

to influence the effort required to develop 

a new application.
[4]

 The formulation of 

theories about the relationship between the 

selected measures and effort is needed. 

The capturing of historical data (e.g. size 

and actual effort) about past projects 

historical data or even past development 

phases within the same project helps 

immensely in prediction. The purpose of 

estimating effort is to predict the amount 

of effort to accomplish a given task, based 

on knowledge of other project 

characteristics that are believed to be 

related to effort. Project characteristics 

(independent variables) are the inputs, 

while its effort (dependent variable) is the 

output we wish to predict. For example, a 

web company may find that to predict the 

effort necessary to implement a new web 

application will require following inputs: 

estimated number of new web pages, total 

number of developers who will help 

develop the new web application, 

developers, average number of years of 

experience with the development tools 

employed, and the number of 

functions/features to be offered by the new 

web application. Figure no 2 illustrates the 

explained effort prediction process. 

ii. Current methods for effort estimation: 

Several techniques for effort estimation 

have been proposed, we have summarized 

the most important and effective 

techniques in this article.  
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Figure 2: Illustration of software effort prediction 

process. 

1. Expert opinion. 

2. Algorithmic models: Regression, 

COnstructive COst MOdel (COCOMO), 

Multi-objective software effort estimation.   

3. Artificial intelligence: Fuzzy logic. 

4. Case-based reasoning (CBR). 

1. Expert opinion: Expert opinion represents the 

process of estimating effort by subjective means 

and is often based on previous experience from 

developing/managing similar projects. It has been 

and still is widely used in software and web 

development. The drawback of this technique is 

that it is challenging to quantify and to determine 

factors that have been used to derive an estimate. 

However, studies show that this technique can be 

a useful estimating tool when used in combination 

with other less subjective methods (e.g., 

algorithmic models). An expert looks at the 

estimated size and cost drivers related to a new 

project for which effort needs to be determined. 

Based on the data obtained data retrieval on past 

finished projects for which actual attempt is 

known is received and a subjective effort 

estimation of the new plan is performed. Deriving 

accurate effort estimation is more likely to occur 

when there are completed projects similar to the 

one having its estimated size and cost drivers. 

2. Algorithmic models: There are several well-

known models, the most effective being 

regression, COCOMO, and Multi-objective 

software effort estimation technique. 

A. COCOMO model: An example of an 

algorithmic model that uses equation 1 is the 

COCOMO model, where parameters and b are 

based on the type of project under construction, 

and the ‘Effort Adjustment Factor’ (EAF) is based 

on 15 cost drivers that are calculated and then 

summed. Parameters and b are chosen based on 

criteria‟s like the type of software project being 

developed. ‘EstSizeNewproj’ is the estimated size 

for the new project.
[4]

 The COCOMO model is an 

example of a generic algorithmic model, and is 

believed to be applicable to any type of software 

project with suitable calibration or adjustment to 

local circumstances.    

Equation 1
[4]

: 

 

This technique attempts to formalize the 

relationship between effort and one or more 

project characteristics. The central project 

characteristic used in such a model is usually 

taken to be some notion of software size (example 

the number of lines of source code, number of 

web pages, or the number of links).
[5]

 This 

formalization is often translated as an equation 

such as that shown by equation 1. Equation 1 

shows that size is the primary factor contributing 

to effort and can be adjusted according to an EAF, 

calculated from cost drivers (example developers, 

experience, tools).
[4]

 

B. Regression based model: Regression-based 

algorithmic models are most suitable to local 

circumstances such as “in-house” analysis as they 

are derived from past data that often represents 

projects from the company itself. Regression 

analysis used to generate regression-based 

algorithmic models provides a procedure for 

determining the „best‟ straight-line fit to a set of 

project data that represents the relationship 

between effort (dependent variable) and the 

project characteristics (example size, experience, 

tools, the predictor or independent variables).
[6]

 

Two of the most widely used techniques are 

multiple regression (MR) and stepwise regression 

(SWR).
[4]

 The difference between both is that MR 

obtains a regression line using all the independent 

variables at the same time, whereas SWR is a 

technique that examines different combinations of 

independent variables, looking for the best 

grouping to explain the highest amount of 

variation in the effort. The past data is used to 
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generate a cost model, which then receives input 

as the values for the new project characteristics.  

Eventually, this model generates estimated effort. 

Equation 2 explains a simple linear regression 

equation, where Yi is the dependent variable, B0, 

B1, Xi and Ei are population Y-intercept, slope 

coefficient, independent variable and random 

error respectively. 

Equation 2
[4]

: 

 

C. Multi-objective software effort estimation 

algorithm: It combines confidence interval 

analysis and assessment of mean absolute error. 

Equations 3-7 explains these thresholds for 

algorithm implementation. 

Equations 3-7
[1]

: 

 

 

 

 

 

In the above equations, fi represents the value of 

the ith project feature with ci as its coefficient, C 

represents a constant, while opi represents the ith 

mathematical operator of the model. To compare 

the performance of prediction models, usage of 

Mean of Magnitude of Relative Error (MMRE) or 

Mean Absolute Error (MAE).
[4]

 MMRE is used to 

have a cumulative measure of the error. pred(25) 

measures the percentage of the estimates whose 

error is less than l% and it is usually set at 25. For 

calculating MAE and Standardized Accuracy 

(SA), N is the number of projects used for 

evaluating the performance, REi and EEi are the 

actual and estimated efforts, MAEPj is the MAE 

of the approach being evaluated and MAErguess is 

the MAE of a large number of random guesses. 

This algorithm is tested on three different 

alternative formulations, baseline comparators and 

current state-of-the-art effort estimators. It has 

been applied to five real-world datasets from the 

PROMISE repository, involving 724 different 

software projects. This algorithm outperforms the 

baseline, state-of-the-art algorithms used for large 

scale datasets. The accuracy results from this 

algorithm are promising, significant and with 

improved accuracy (Table 1). 

Table1: Depicts the accuracy results from this multi-objective software effort estimation algorithm 

(CoGEE) (Reproduced from Wang et. al. 2016). 

Class SA Desharnais SA Finnish SA Maxwell SA Miyazaki SA 

CoGEE 0.48 CoGEE 0.47 CART 0.52 CoGEE 0.56 CoGEE 0.90 

GA-SAE 0.48 LR 0.46 CoGEE 0.45 GA-SAE 0.56 LR 0.76 

GA-Ct 0.45 GA-SAE 0.45 GA-Ct 0.45 CART 0.51 GA-Ct 0.66 

CART 0.40 CART 0.38 LR 0.42 CBB3 0.51 GA-SAE 0.66 

CBB3 0.40 CBB3 0.34 CBB3 0.41 CBB1 0.48 N8GAII-UO 0.60 

Median 0.38 Median 0.33 GA-SAE 0.41 CBB2 0.47 CBB2 0.56 

CBB2 0.35 CBB2 0.32 CBB2 0.38 N8GAII-UO 0.41 CBB3 0.56 

CBB1 0.29 CBB1 0.27 CBB1 0.31 LR 0.38 CBB1 0.55 

Mean 0.25 Mean 0.26 N8GAII-UO 0.19 Median 0.33 Media 0.49 

LR 0.23 GA-Ct 0.09 Mean 0.18 Mean 0.28 CART 0.46 

N8GAII-UO -1.7 N8GAII-UO 0.08 Median 0.14 GA-Ct 0.26 Mean 0.30 

 

3. Artificial intelligence techniques: Artificial 

intelligence techniques have been used as a 

complement to, or as an alternative to the previous 

categories. Some important of them include fuzzy 

logic, regression trees and neural networks.
[7,11]

 It 

starts with selecting datasets from the database 

according the procedure and characteristics, 

followed by executing the three frameworks, 

genetic, exhaustive and random guessing for 

collecting the performance measures. 
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Figure 3: Depicts the workflow of applying 

machine learning technique study (Reproduced 

from Murillo et. al. 2017). 

The genetic and exhaustive frameworks should 

consist of attribute selectors and learning 

algorithms. Execution of the genetic framework 

should be done with different configurations 

including 3 levels of generations, population, 

mutation and crossover.
[8]

 This technique have 

shown to have a prediction accuracy of 45-80%. 

Figure 3 depicts the workflow of applying 

artificial intelligence technique study. Some 

groups have utilized evolutionary algorithms for 

software effort estimation. K-nearest neighbor 

(KNN) is used to clean noisy data followed by 

training and validation.
[9]

 This is done to obtain a 

clean dataset as most of the effort estimation 

datasets consists of missing values.
[10]

 Fuzzy 

learning is based on genetic programming and 

simulated annealing. Fuzzy algorithms, FRSBM, 

GFSGPG-R, GFS-GSP-R, and GFS-SAP-Sym-R 

are applied to the tested datasets.
[5]

 Adaptive 

Neuro Fuzzy Inference System (ANFIS) can be 

calculated with equation 8. 

Equation 8
[5]

: 

 

In equation 8, RE is the relative error, A is 

estimate of preset attractiveness and E is the error 

factor. By comparing MRE, PRED and RE values, 

GFS-SAP-Sym-R is found to be an accurate 

estimator for dataset of any size (small, medium 

and large). Ensemble-R has shown worst 

performance for all 3 datasets (Table 2). Budget of 

a project can be estimated correctly if applicability 

of a particular evolutionary technique under 

various circumstances is known. If the dataset is 

of small, medium or large size, selection of 

evolutionary technique can be done accordingly.
[5]

Table2: Characteristics of datasets used with MMRE and PRED values of fuzzy logic algorithm application 

(Reproduced from Wang et. al. 2016). 

Dataset No. of 

observations 

No. of features No. of numeric 

features 

No. of categorical 

features 

Desharnais 82 7 7 0 

Maxwell 62 25 3 22 

Muyazaki 48 8 7 1 
 

Dataset Method MMRE PRED(25) 

Desharnais Ensemble-R 0.59 0.16 

FRSBM 0.38 0.28 

GFS-GPG-R 0.28 0.34 

GFS-GSP-R 0.29 0.33 

GFS-SAP-Sym-R 0.29 0.33 

Maxwell Ensemble-R 1.17 0.12 

FRSBM 0.58 0.25 

GFS-GPG-R 0.57 0.11 

GFS-GSP-R 0.27 0.30 

GFS-SAP-Sym-R 0.29 0.30 

Muyazaki Ensemble-R 0.75 0.12 
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FRSBM 0.41 0.20 

GFS-GPG-R 0.61 0.16 

GFS-GSP-R 0.29 0.31 

GFS-SAP-Sym-R 0.27 0.33 
 

4. Case-based reasoning (CBR): Case-based 

reasoning (CBR) provides estimates by comparing 

the current problem to be estimated against a 

library of historical information from completed 

projects with a known effort (case base).
[9]

 

Characterizing a new project p, for which an 

estimate is required, with attributes (features) 

common to those completed projects stored in the 

case base. In terms of software cost estimation, 

features represent size measures and cost drivers. 

Use of this characterization as a basis by finding 

similar (analogous) completed projects, for which 

effort is known. This process can be achieved by 

measuring the „distance‟ between two projects, 

based on the values of the number of features (k) 

for these projects.
[12]

 Some important features of 

CBR are, feature subset selection determining the 

optimum subset of features that yield the most 

accurate estimation is utilized. Similarity 

measures the level of similarity between different 

cases, with several similarity measures proposed 

in the literature. Scaling also known as 

standardization, represents the transformation of 

attribute values according to a defined rule, such 

that all attributes present values within the same 

range and hence have the same degree of 

influence on the results. Number of analogies 

refers to the number of most similar cases that will 

be used to generate the estimation. Analogy 

adaptation, once the similar cases have been 

selected the next step is to decide how to generate 

the estimation for project. Adaptation rules are 

used to adapt estimated effort, according to a 

given criterion such that it reflects the 

characteristics of the target project more closely. 

Conclusion: 

Software project estimation is important to 

manage cost and resources of organization. There 

are different ways of performing estimation 

(expert opinion, algorithmic models, artificial 

intelligence, case-based reasoning (CBR). By 

comparing all the mentioned techniques, the 

artificial intelligence approach seems to be the 

most accurate and upcoming mode of prediction.  
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