
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 7 July 2018, Page No. 24106-24108

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i7.01

Alexey Vasyukov, IJECS Volume 7 Issue 7 July 2018 Page No. 24106-24108 Page 24106

Using CRIU with HPC Containers: Field Experience

Alexey Vasyukov
1
, Katerina Beklemysheva

2

1
Moscow Institute of Physics and Technology,

Institutsky lane 9, Dolgoprudny, 141701, Russia
2
 Moscow Institute of Physics and Technology,

Institutsky lane 9, Dolgoprudny, 141701, Russia

Abstract:

The paper provides an overview of current authors’ field experience of using CRIU for checkpoints and

restores of computing containers with HPC applications. Docker and Singularity containers are considered.

Reasonable results are obtained for locally running applications. Problems associated with providing the

same features for distributed MPI applications are discussed, and possible solutions are outlined with the

regard to current state of development of CRIU, Docker, Singularity, Open MPI and competing technologies.

Keywords: criu, containers, docker, singularity, mpi, cloud computing.

1. Problem statement

When using computational scientific applications on

high-performance clusters, one of the actual

problems is that it is often difficult to predict in

advance how much resources will require a specific

calculation and, accordingly, how long it will take.

At the same time, on large clusters for each specific

calculation task the execution time is known to be

limited. If the calculation does not fit within the

allotted time, it is forcibly stopped by the cluster

resource scheduler. Obviously, in the case of such a

situation, it is highly desirable in the next allocated

time quantum not to start the calculation anew, but

to continue it from the same logical moment at

which it was stopped. Despite all the importance of

this problem, an ideal solution for it does not exist

yet; the research is ongoing in this area. This work

contributes to the subject area, describing a potential

system based on CRIU technology [1], and also

pointing out open problem questions and possible

solutions.

2. Related work

In principle, two approaches to this problem are

possible: checkpoint at the system level or at the

level of the application.

Obviously, if the calculation state is checkpointed

at the application level, all possible problems and

corner cases can be worked around in the application

code - at the relevant times the application saves the

consistent state of the calculation data and stores it

on the disk, and if necessary can restore its state in

memory from this dump. This approach is quite time

consuming, since it requires the implementation of

all logic at the application code level. Nevertheless,

computational applications for which this feature is

crucial use this approach, as it is reliable and

versatile.

Implementing checkpoints at the system level

seems to be a potentially more correct approach; it

allows implementing universal mechanisms,

integrating checkpoint and restore operations into

cluster resource schedulers. In this area, the most

known are two solutions - DMTCP [2] and BLCR

[3].

To date, CRIU technology looks like a promising

new approach to this problem. The essential

characteristics of CRIU, which make it a very

interesting one:

 It’s the only solution to date that does not

require any special preparation of the

runtime environment. CRIU runs on a

regular Linux kernel, does not require

rebuilding applications, does not require a

special procedure for launching

Alexey Vasyukov, IJECS Volume 7 Issue 7 July 2018 Page No. 24106-24108 Page 24107

applications to checkpoint them later.

 The solution was originally intended to be

used in conjunction with compute

containers, such as Docker and

(potentially) Singularity. Using containers

as computational units becomes a common

trend, but legacy systems are designed

without taking them into account.

3. Basic CRIU workflow for computational

applications

Simple cases are covered by CRIU out of the box.

We used a system based on Fedora 26 for testing and

High Performance Linpack (HPL) [4] as a standard

test computational application. Test procedure is as

simple as follows.

Start HPL: /usr/lib64/mpich/bin/xhpl_mpich >

/tpm/hpl.log

Find PID of HPL process: ps aux | grep [x]hpl

Create checkpoint for the PID: criu dump --shell-

job -t 9256

Review system processes, ensure that HPL is not

running. After that restore HPL process from

checkpoint: criu restore --shell-job

Review HPL log and ensure that the process was

restored and the computation completed

successfully:

--

||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)=

0.0025926 PASSED

=====================================

==

Finished 1 tests with the following results:

 1 tests completed and passed residual

checks,

 0 tests completed and failed residual

checks,

 0 tests skipped because of illegal input

values.

--

End of Tests.

=====================================

==

A similar procedure for the application in the

Docker container is performed using the CRIU

documentation [5] and does not cause any problems.

For Singularity, the mechanism of container

integration with CRIU has not yet been worked out

completely [6], but Singularity developers are

positive about the prospects of this technology, so

we can expect that in the next versions of Singularity

there will be a regular support for CRIU.

4. Using CRIU with distributed applications

This area is much more problematic. To work with

distributed scientific applications, the principal thing

is the ability to checkpoint and restores applications

that use MPI for the interaction of processes on

different computing nodes. It has been repeatedly

noted that the use of CRIU in conjunction with MPI

is quite a complex task, which has not been solved

to the end today [7], [8].

Saving the state of the application working with

MPI consistently requires a lot of steps and cannot

be performed completely by third-party tools.

Modern high-speed networks used for MPI on

clusters offload a significant part of network

exchange operations logic to the level of network

equipment (network cards and switches). In this

regard, any technology that considers MPI process as

a black box cannot correctly save its state.

The only reasonable way out of this situation is the

close integration of CR technology (CRIU in this

case) with the messaging environment itself. This is

the way BLCR and DMTCP have gone and

implemented integration with Open MPI.

. In this case, the processing logic for the

distributed application is as follows:

 The messaging environment stops the

network activity and waits for the normal

closing of all connections. After the

completion of this procedure, the

application is in a condition suitable for

creating a checkpoint.

 The messaging environment calls the CRIU

plugin to save the state of the application,

since only the messaging environment can

reliably determine the point at which the

application is already usable for

checkpointing.

 When the distributed application is restored,

its state in memory is restored by the

means of CRIU.

Alexey Vasyukov, IJECS Volume 7 Issue 7 July 2018 Page No. 24106-24108 Page 24108

 After the application is restored, the

network context is recreated and network

operation continues.

This logic is quite difficult to implement. Work in

this direction was started [9], but today it is far from

over.

5. Conclusion

To date, the use of CRIU allows transparent

checkpoint and restore for computing applications

running in Docker containers. It can be expected that

in the near future the same option will be supported

for Singularity containers. For distributed

applications based on MPI, a similar technology is

still under active development. These applications

can be checkpointed and restored now using

DMTCP or BLCR, which require special preparation

of the environment and do not support

computational containers for the moment.

Acknowledgments

The research was supported by Russian

Foundation for Basic Research grant 15-29-07096.

References

[1] CRIU Project [Online]. Available

https://criu.org/ [Accessed: June. 20, 2018].

[2] DMTCP Project [Online]. Available

http://dmtcp.sourceforge.net/ [Accessed: June.

20, 2018].

[3] BLCR Project [Online]. Available https://upc-

bugs.lbl.gov/blcr/doc/html/ [Accessed: June.

20, 2018].

[4] High Performance Linpack [Online]. Available

http://www.netlib.org/benchmark/hpl/

[Accessed: June. 20, 2018].

[5] CRIU documentation on Docker integration

[Online]. Available https://criu.org/Docker

[Accessed: June. 20, 2018].

[6] Singularity and CRIU integration discussion

[Online]. Available

https://github.com/singularityware/singularity/i

ssues/468 [Accessed: June. 20, 2018].

[7] A. Reber and P. Vaterlein, “Checkpoint/Restore

in User-Space with Open MPI,” In Proceedings

of SInCom, 2014.

[8] M. Rodríguez-Pascual, J.A. Moríñigo, R. Mayo-

García, “Checkpoint/restart in Slurm: current

status and new developments,” In Proceedings

of SLUG, 2016.

[9] Initial CRIU support in Open MPI [Online].

Available https://github.com/open-

mpi/ompi/tree/master/opal/mca/crs/criu

[Accessed: June. 20, 2018].

Author Profile

Alexey Vasyukov received the B.S. and M.S.

degrees in Applied Mathematics from MIPT in 2007

and 2009, respectively. Received Ph.D. in 2012, the

dissertation was devoted to numerical modeling of

complex wave patterns.

Katerina Beklemysheva received the B.S. and M.S.

degrees in Applied Mathematics from MIPT in 2008

and 2010, respectively. Received Ph.D. in 2013, the

dissertation was devoted to mathematical modeling

of complex contact conditions.

