
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 6 June 2015, Page No. 12923-12926

Shrikant S. Fulzele, IJECS Volume 4 Issue 6 June, 2015 Page No.12923-12926 Page 12923

Novel Technique for Parallel Pipeline Double Precision IEEE-754

Floating Point Adder

Shrikant Fulzele1, Prof. Venkat Ghodke2

1G.S Moze College of Engineering, Balewadi, Pune-45, India

Shrikantfulzele5@gmail.com

2AISSMS Information of Technology, Shivaji nagar,

Pune-01, India

Venkatghodke@gmail.com

Abstract: The Floating Point Additions are critical to implement on FPGAs due to their complexity of their algorithms in

hard real-time due to excessive computational burden associated with repeated calculations with high precision numbers. Thus,

many scientific problems requires floating point arithmetic with high level of accuracy in their calculations. Moreover, at the

hardware level, any basic addition or subtraction circuit has to incorporate the alignment of the significands. This Paper

represents Novel technique for implementation of parallel pipeline Double precision IEEE-754 floating point adder that can

complete a operation in two clock cycle. This kind of technique can be very useful for parallelism of FPGA device and this

proposed technique can exhibits improvement in latency and also in operational chip area management. The proposed double

precision floating point adder has been implemented with XC2V6000 and XC3SI500 Xilinx FPGA Device.

Keywords: Floating Point Addition, IEEE-754 Standard, FPGA, Delay Optimization, VHDL.

1. Introduction

Floating-point addition is the most frequent floating-point

operation and accounts for almost half of the scientific

operation. Therefore, it is a fundamental component of math

coprocessor, DSP processors, embedded arithmetic processors,

and data processing units. These components demand high

numerical stability and accuracy and hence are floating- point

based. Floating-point addition is a costly operation in terms of

hardware and timing as it needs different types of building

blocks with variable latency. In floating-point addition

implementations, latency is the overall performance bottleneck.

A lot of work has been done to improve the overall latency of

floating-point adders. Various algorithms and design

approaches have been developed by the Very Large Scale

Integrated (VLSI) circuit community [1] over the span of last

two decades.

The recent time in the area of Field Programmable Gate Array

(FPGAs) has given many useful ways of doing things and tools

for the development of dedicated and reconfigurable hardware

employing complex digital circuits at the chip level. Therefore,

FPGA technology can be productively used in order to develop

digital circuits so that the problem of floating-point

representation of numbers and the computational resources

useful while performing the math and logical operations during

execution of the set of computer instructions could be solved at

the hardware level. This investigation presents a new technique

to represent a double precision IEEE floating-point adder that

can complete the operation within two clock cycles.

A number of works have been reported in the literature with an

aim to achieve a reduced latency realization of floating-point

operations. [1-2] The algorithm in effectively finishes the

floating-point addition within two clock cycles with the packet

forwarding format for handling data hazards in deeply pipe lined

floating-point pipelines. Our proposed technique has exhibited

significant improvement in the latency reduction as well as also

in the operational chip area management while implementing a

dedicated double precision IEEE floating-point adder in FPGA

based embedded system.

The proposed Double precision floating point adder has been

implemented on FPGA device. All the parameters of FPGA

device like use of slices, number of slice flip flop, number of 4

input LUTs and so on are observed. The significant

improvement on previous algorithm and parallel pipeline

improves its latency and helps to complete a operation in two

clock cycle.

2. Related Work

Purna Ramesh Addanki, Venkata Nagartna Tilak Alapati

andMallikarjuna Prasad Avana (2013) presented a high speed

floating-point double precision adder/subtractor and multiplier,

which are implemented on a virtex-6 FPGA using Verilog

language. Their proposed designs were compliant with IEEE

754 standard format and handles overflow, underflow cases and

rounding mode. The IEEE standard specifies four rounding

modes and the rounding odes are selected for various bit

combinations of mode. Based on the changes in the rounding to

the mantissa corresponding changes has to be made in the

exponent path also. They showed that, their presented design

was achieved high operating frequency with better accuracy and

considerably good performance. [9].Ali Malik, and Seok-Bum

http://www.ijecs.in/

Shrikant S. Fulzele, IJECS Volume 4 Issue 6 June, 2015 Page No.12923-12926 Page 12924

Ko (2006) implemented the floating point adder using leading

one predictor (LOP) algorithm instead of leading one Detector

(LOD) algorithm. The key role of the LOP is to calculate the

leading number of zeros in the addition result, working in

parallel with the 2's complement adder. The design implemented

in Vertex2p FPGA. The improvement seen in LOP design is the

level of logic reduced by 23%with an added expense of

increasing the area by 38%.[6].The double precision add and

multiply achieved the operating frequency of 230 MHz using a

10 stage adder pipeline and a 12 stage multiplier pipeline. The

area requirement is 571 slices for adder. The floating point

modules are hand-mapped and placed using JHDL as a design

entry language. This presentation details the size and the

performance of floating point operators in a library developed at

Sandia National Labs.[8].

3. IEEE-754 Standard Floating-Point Numbers

An IEEE standard floating point numbers are of different types

according to their precisions i.e. the number of their mantissa bit

length. In accordance with IEEE 754-2008, there are half,

single, double and quadruple precision binary numbers having a

mantissa of bit length 16, 32, 64, 128 respectively. Out of these,

the double precision number is most widely used in the area of

binary applications. This type of representation of the numbers

is advantageous due to fact that a large spectrum of numbers can

be expressed with a limited number of bits. A double precision

floating point number has a greater dynamic range and consists

of 64 binary bits. Out of which the 1 sl bit is the sign bit, the next

11 bits are the exponent and the remaining 52 bits represent the

mantissa. This has been explained in the Figure 1.

S 11 bit Exponent-E 53 bit fraction-F

 0 1 11 12 63

Figure 1. IEEE-754 double precision format

For example, the floating point representation of the decimal

number 3.12 will be 0l00000000001000-

111101011100001010001111010111000010100011110110

when represented as a double precision floating point number.

The sigh bit '0' represents the positive sign, the exponent

"10000000000",of which the 11th bit corresponds to the sign bit

of the exponent, effectively making the range of the exponent [-

1023,1024]. Thereafter, a bias of 1023 is used for determining

the exponent. So the exponent of this number will be 0 and the

mantissa has a hidden bit of value' l before the msb Therefore,

the mantissa becomes (including the hidden bit)

1.10001111010111000010100011110101110000101000111l0

110. The first bit is hidden because it is always 1. However, for

the preprocessing of the floating point numbers before the

addition or subtraction we have to consider the hidden bit also.

Computation of the IEEE representations of the rounded sum:

rnd(sum)=rnd((-1)sa .2ea. . fa+(-1)(SOP+sb).2eb .fb) (1)

Let the effective sign of operation be

S.EFF = sa ⊕ sb ⊕ SOP

So, for S.EFF = 0 the circuit will perform an essential addition

and if S.EFF = 1 then the arithmetic operation will essentially

be a subtraction. From these two numbers, and the exponent

difference 0, the small operand is defined as (ss, es, fs) and the

large operand is denoted as, (sl, el, fl). The resulting sum can be

computed as [1]:

Sum=(-1)sl . 2el . (fl+(-1)S.EFF (fs.2-|δ|)) (2)

4. Proposed Algorithm

We have followed a similar approach as [1] for designing the

basic algorithm for this implementation. The floating point

arithmetic in [1] is two stage pipe lined which are divided into

two paths, namely "R-Path" and "N-Path". The two paths are

selected on the basis of the exponent difference. The new

algorithm has been arrived at by following a few implemental

changes in the algorithm of [1].

Figure 2. IEEE-754 double precision format

This algorithm is broken into two pipeline stages, which are

executed in two different clock cycles. The advantage of the

pipelining mechanism is that, despite having a higher input-

output sequential length, they offer an unmatched throughput by

virtue of their assembly line structure. An overview of the

proposed algorithm is explained by Figure 2.

A. First Clock Cycle Operation

This is the first stage in the pipeline mechanism. The

components of the Floating Point number, in terms of bit vector,

are,

(S, E [0:10], F [0:52])

The basic algorithm operates only with normalized FP numbers,

i.e. f ε [1, 2]. The basic operation is performed within two clock

stages, and is determined by the parameter.

 SOP ε {0, l}

Shrikant S. Fulzele, IJECS Volume 4 Issue 6 June, 2015 Page No.12923-12926 Page 12925

It is supplied as an input to the algorithm. The mathematical

operation to be performed is determined by calculating the

effective sign of operation,

S.EFF = sa ⊕ sb ⊕ SOP

After this, some initial preprocessing operations are done before

adding or subtracting the two numbers. The exponent difference

is obtained and is represented as δ=ea-eb then the number with the

smaller magnitude is sorted out through various operations

based on conditions derived from the effective sign and the

resultant of the exponent difference. In case the exponent

difference is in the range [-63, 64] the smaller significand is

shifted by MAG_MED positions to the right. The amount of

alignment shift in medium range is determined by the modular

value of the exponent difference 8,

i.e. MAG_MED. The alignment shift can be formulated as:

(−1)𝑆𝐼𝐺𝑁_𝑀𝐸𝐷. 〈𝑀𝐴𝐺_𝑀𝐸𝐷〉 = {
𝛿 − 1

𝛿
 𝑖𝑓 64 ≥𝛿≥1
𝑖𝑓 0≥𝛿≥−63

 (3)

B. Second Clock Cycle Operation

This is the second stage of the pipelining mechanism. The two

"preprocessed" significands are added and the result is rounded

in accordance with the IEEE standard rounding algorithm. Here

the rounding algorithm from [4] has been implemented. At the

end, it is normalized. The output result is a 64 bit binary floating

point number.

rnd (sum) = rnd ((-1)sa .2ea .fa+(-1)(SOP+sb) .2eb .fb (4)

C. Algorithm for Addition

Let s1; e1; f1 and s2; e2; f2 be the signs, exponents, and

significands of two input floating-point operands, N1 and N2,

respectively. Given these two numbers, Figure 4 shows the

flowchart of the standard floating-point adder algorithm. A

description of the algorithm is as follows.

1. The two operands, N1 and N2 are read in and compared for

denormalization and infinity. If numbers are denormalized, set

the implicit bit to 0 otherwise it is set to 1. At this point, the

fraction part is extended to 53 bits.

2. The two exponents, e1 and e2 are compared using 8-bit

subtraction. If e1 is less than e2, N1 and N2 are swapped i.e.

previous f2 will now be referred to as f1 and vice versa.

3. The smaller fraction, f2 is shifted right by the absolute

difference result of the two exponents’ subtraction. Now both

the numbers have the same exponent.

4. The two signs are used to see whether the operation is a

subtraction or an addition.

5. If the operation is a subtraction, the bits of the f2 are inverted.

6. Now the two fractions are added using a 2’s complement

adder.

7. If the result sum is a negative number, it has to be inverted

and a 1 has to be added to the result.

8. The result is then passed through a leading one detector or

leading zero counter. This is the first step in the normalization

step.

9. Using the results from the leading one detector, the result is

then shifted left to be normalized. In some cases, 1-bit right shift

is needed.

10. The result is then rounded towards nearest even, the default

rounding mode.

11. If the carry out from the rounding adder is 1, the result is left

shifted by one.

12. Using the results from the leading one detector, the exponent

is adjusted. The sign is computed and after overflow and

underflow check, the result is registered

5. Implementation Details

The implementation of this algorithm is has been accomplished

using the Xilinx XC3S1500 device of Spartan 3 family. The

Xilinx ISE 14.1 is used to generate a code and also a designing

tool. Also there are scopes for further development. A report

has been generated for estimation of usage of resources in

below table. I

Table no. I Device Utilization Summary

 Device

Utilization

Summary

Logic Utilization Used Available Utilization

No. of slice LUTs 333 407 47%
No. of fully used

LUT-FF pairs
604 1408 42%

No. of bounded

IOBs
190 108 178%

No. of

BUFS/BUFGCTRL
1 24 4%

6. Simulation Results

The Floating point adder has been simulated using Xilinx 14.1.

While the device utilization summary has been showed above.

Figure 3(a) and 3(b) shows the simulation result of addition

and subtraction respectively. And Figure 3(c) shows a

schematic diagram of a design.

Fig no. 3(a) Simulation result of Addition

Fig No. 3(b) Simulation result of Subtraction

Shrikant S. Fulzele, IJECS Volume 4 Issue 6 June, 2015 Page No.12923-12926 Page 12926

Fig No. 3(c) Schematic View of Design

Conclusion

This paper has successfully demonstrated an implementation of

a high speed, IEEE 754, double precision floating point adder

with a significant decrease in latency. This manifest in the fact

that FPGA based embedded systems has a higher advantage of

lower computational aspects. Also, an implementation work of

this algorithm, on the Xilinx Spartan-3 FPGA would give results

with further improvement.

Acknowledgment

The authors would like to take this opportunity to acknowledge

Prof. Venkat Ghodke AISSMS IOT Shivaji Nagar, Pune for

being a great source of encouragement, ADRIN for presenting

us with the scope of learning, and the anonymous reviewers for

their insightful comments.

References

[1] Somsubhra Ghosh, Prarthana Bhattacharyya, and Arka

Dutta, “FPGA Based Implementation of a Double

Precision IEEE Floating-Point Adder”, Proc. of 7th

International Conference on Intelligent Systems and

Control (ISCO 2013), pp 271-275, 2013

[2] Adarsha KM, Ashwini SS, Dr. MZ Kurian, "Double

Precision IEEE-754 Floating-Point Adder Design Based

on FPGA", International Journal of Advanced Research

in Electrical, Electronics and Instrumentation

Engineering, Vol. 3, Issue 4, April 2014
[3] Purna Ramesh Addanki, Venkata Nagaratna Tilak

Alapati and Mallikarjuna Prasad Avana, “An FPGA

Based High Speed IEEE – 754 Double Precision

Floating Point Adder\Subtractor and Multiplier Using

Verilog”, International journal of advanced science and

technology. Vol. 52, March, 2013.

[4] Paschalakis, S., Lee, P., “Double Precision Floating-

Point Arithmetic on FPGAs”, In Proc. 2003 2nd IEEE

International Conference on Field Programmable

Technology (FPT ‘03), Tokyo, Japan, 2003.

[5] Peter-Michael Seidel, Guy Even, "Delay-Optimized

Implementation of IEEE Floating-Point Addition", IEEE

Trans. on Computers, vol. 53, no.2, pp. 97-113, Feb.

2004.

[6] L. Louca, T. Cook, and W. Johnson, “Single precision

floating-point adder for Altera FPGA device”, IEEE

Trans. on Information and Systems, vol. 4, pp. 297-305,

1996.

[7] W. Ligon, S. McMillan, G. Monn, F. Stivers, and K.

Underwood, “Reconfigurable hardware to perform high

precision operations on FPGAs”, Proc. of IEEE

International Conference on Application-specific

Systems, Architectures and Processors, pp. 83-88, 1999

[8] E. Roesler, B. Nelson, “Novel optimizations for

arithmetic hardware”, Proc. 2002 2nd IEEE International

Conference on Field Programmable Technology (FPT

‘02), 2002.

[9] J. Liang, R. Tessier, and O. Mencer, Floating Point Unit

Generation and Evaluation for FPGAs, in the

Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa,

California, April 2003.

[10] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna,

“Analysis of HighPerformance Floating-Point

Arithmetic on FPGAs”, proc. IEEE Trans. on

Computers, vol. 49, no. 1, pp. 33-47, 2003.

[11] Peter-Michael Seidel, Guy Even, "Delay-Optimized

Implementation of IEEE Floating-Point Addition",

IEEE Trans. on Computers, vol. 53, no. 2, pp. 97-113,

Feb. 2004.

Author Profile

Shrikant Fulzele received B.E Degree in Electronics Engineering from

Nagpur University (2008-2012) and M.E Degree in VLSI and

Embedded System from Savitribai Phule Pune University (2013-2015)

Prof. Venkat Ghodke received the B.E. degree in Electronics

Engineering from Dr.B.A.M.University, Aurangabad, Maharashtra,

India, in 1997, and the M.E degree in Electronics Engineering

specialization with Digital System from Pune University, Maharashtra,

India, in 2010.

Currently He is an Assistant Professor in AISSMS’S Institute of

information technology of Savitribai Phule University of Pune, India.

His research interests include digital image processing and embedded

system area.

