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Abstract: The Floating Point Additions are critical to implement on FPGAs due to their complexity of their algorithms in 

hard real-time due to excessive computational burden associated with repeated calculations with high precision numbers. Thus, 

many scientific problems requires floating point arithmetic with high level of accuracy in their calculations. Moreover, at the 

hardware level, any basic addition or subtraction circuit has to incorporate the alignment of the significands. This Paper 

represents Novel technique for implementation of parallel pipeline Double precision IEEE-754 floating point adder that can 

complete a operation in two clock cycle. This kind of technique can be very useful for parallelism of FPGA device and this 

proposed technique can exhibits improvement in latency and also in operational chip area management. The proposed double 

precision floating point adder has been implemented with XC2V6000 and XC3SI500 Xilinx FPGA Device. 
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1. Introduction 

Floating-point addition is the most frequent floating-point 

operation and accounts for almost half of the scientific 

operation. Therefore, it is a fundamental component of math 

coprocessor, DSP processors, embedded arithmetic processors, 

and data processing units. These components demand high 

numerical stability and accuracy and hence are floating- point 

based. Floating-point addition is a costly operation in terms of 

hardware and timing as it needs different types of building 

blocks with variable latency. In floating-point addition 

implementations, latency is the overall performance bottleneck. 

A lot of work has been done to improve the overall latency of 

floating-point adders. Various algorithms and design 

approaches have been developed by the Very Large Scale 

Integrated (VLSI) circuit community [1] over the span of last 

two decades.  

The recent time in the area of Field Programmable Gate Array 

(FPGAs) has given many useful ways of doing things and tools 

for the development of dedicated and reconfigurable hardware 

employing complex digital circuits at the chip level. Therefore, 

FPGA technology can be productively used in order to develop 

digital circuits so that the problem of floating-point 

representation of numbers and the computational resources 

useful while performing the math and logical operations during 

execution of the set of computer instructions could be solved at 

the hardware level. This investigation presents a new technique  

 

to represent a double precision IEEE floating-point adder that 

can complete the operation within two clock cycles. 

A number of works have been reported in the literature with an 

aim to achieve a reduced latency realization of floating-point 

operations. [1-2] The algorithm in effectively finishes the 

floating-point addition within two clock cycles with the packet 

forwarding format for handling data hazards in deeply pipe lined 

floating-point pipelines. Our proposed technique has exhibited 

significant improvement in the latency reduction as well as also 

in the operational chip area management while implementing a 

dedicated double precision IEEE floating-point adder in FPGA 

based embedded system. 

The proposed Double precision floating point adder has been 

implemented on FPGA device. All the parameters of FPGA 

device like use of slices, number of slice flip flop, number of 4 

input LUTs and so on are observed. The significant 

improvement on previous algorithm and parallel pipeline 

improves its latency and helps to complete a operation in two 

clock cycle. 

2. Related Work 

Purna Ramesh Addanki, Venkata Nagartna Tilak Alapati 

andMallikarjuna Prasad Avana (2013) presented a high speed 

floating-point double precision adder/subtractor and multiplier, 

which are implemented on a virtex-6 FPGA using Verilog 

language. Their proposed designs were compliant with IEEE 

754 standard format and handles overflow, underflow cases and 

rounding mode. The IEEE standard specifies four rounding 

modes and the rounding odes are selected for various bit 

combinations of mode. Based on the changes in the rounding to 

the mantissa corresponding changes has to be made in the 

exponent path also. They showed that, their presented design 

was achieved high operating frequency with better accuracy and 

considerably good performance. [9].Ali Malik, and Seok-Bum 
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Ko (2006) implemented the floating point adder using leading 

one predictor (LOP) algorithm instead of leading one Detector 

(LOD) algorithm. The key role of the LOP is to calculate the 

leading number of zeros in the addition result, working in 

parallel with the 2's complement adder. The design implemented 

in Vertex2p FPGA. The improvement seen in LOP design is the 

level of logic reduced by 23%with an added expense of 

increasing the area by 38%.[6].The double precision add and 

multiply achieved the operating frequency of 230 MHz using a 

10 stage adder pipeline and a 12 stage multiplier pipeline. The 

area requirement is 571 slices for adder. The floating point 

modules are hand-mapped and placed using JHDL as a design 

entry language. This presentation details the size and the 

performance of floating point operators in a library developed at 

Sandia National Labs.[8]. 

 

3. IEEE-754 Standard Floating-Point Numbers 

An IEEE standard floating point numbers are of different types 

according to their precisions i.e. the number of their mantissa bit 

length. In accordance with IEEE 754-2008, there are half, 

single, double and quadruple precision binary numbers having a 

mantissa of bit length 16, 32, 64, 128 respectively. Out of these, 

the double precision number is most widely used in the area of 

binary applications. This type of representation of the numbers 

is advantageous due to fact that a large spectrum of numbers can 

be expressed with a limited number of bits. A double precision 

floating point number has a greater dynamic range and consists 

of 64 binary bits. Out of which the 1 sl bit is the sign bit, the next 

11 bits are the exponent and the remaining 52 bits represent the 

mantissa. This has been explained in the Figure 1.  

 

S 11 bit Exponent-E 53 bit fraction-F 

     0    1                          11   12                                     63 

Figure 1. IEEE-754 double precision format 
 

For example, the floating point representation of the decimal 

number 3.12 will be 0l00000000001000-

111101011100001010001111010111000010100011110110 

when represented as a double precision floating point number. 

The sigh bit '0' represents the positive sign, the exponent 

"10000000000",of which the 11th bit corresponds to the sign bit 

of the exponent, effectively making the range of the exponent [-

1023,1024]. Thereafter, a bias of 1023 is used for determining 

the exponent. So the exponent of this number will be 0 and the  

mantissa has a hidden bit of value' l before the msb Therefore, 

the mantissa becomes (including the hidden bit) 

1.10001111010111000010100011110101110000101000111l0

110. The first bit is hidden because it is always 1. However, for 

the preprocessing of the floating point numbers before the 

addition or subtraction we have to consider the hidden bit also. 

Computation of the IEEE representations of the rounded sum: 

 

rnd(sum)=rnd((-1)sa .2ea. . fa+(-1)(SOP+sb).2eb .fb)         (1) 

 

Let the effective sign of operation be 

 

S.EFF = sa  ⊕ sb ⊕ SOP 

So, for S.EFF = 0 the circuit will perform an essential addition 

and if S.EFF = 1 then the arithmetic operation will essentially 

be a subtraction. From these two numbers, and the exponent 

difference 0, the small operand is defined as (ss, es, fs) and the 

large operand is denoted as, (sl, el, fl). The resulting sum can be 

computed as [1]: 

 

Sum=(-1)sl . 2el . (fl+(-1)S.EFF (fs.2-|δ| ))               (2) 

4. Proposed Algorithm 

We have followed a similar approach as [1] for designing the 

basic algorithm for this implementation. The floating point 

arithmetic in [1] is two stage pipe lined which are divided into 

two paths, namely "R-Path" and "N-Path". The two paths are 

selected on the basis of the exponent difference. The new 

algorithm has been arrived at by following a few implemental 

changes in the algorithm of [1]. 

 
 

Figure 2. IEEE-754 double precision format 
 

This algorithm is broken into two pipeline stages, which are 

executed in two different clock cycles. The advantage of the 

pipelining mechanism is that, despite having a higher input-

output sequential length, they offer an unmatched throughput by 

virtue of their assembly line structure. An overview of the 

proposed algorithm is explained by Figure 2. 

 

A. First Clock Cycle Operation 

This is the first stage in the pipeline mechanism. The 

components of the Floating Point number, in terms of bit vector, 

are, 

(S, E [0:10], F [0:52]) 

The basic algorithm operates only with normalized FP numbers, 

i.e. f ε [1, 2]. The basic operation is performed within two clock 

stages, and is determined by the parameter. 

 SOP ε {0, l} 
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It is supplied as an input to the algorithm. The mathematical 

operation to be performed is determined by calculating the 

effective sign of operation, 

S.EFF = sa ⊕ sb ⊕ SOP 

After this, some initial preprocessing operations are done before 

adding or subtracting the two numbers. The exponent difference 

is obtained and is represented as δ=ea-eb then the number with the 

smaller magnitude is sorted out through various operations 

based on conditions derived from the effective sign and the 

resultant of the exponent difference. In case the exponent 

difference is in the range [-63, 64] the smaller significand is 

shifted by MAG_MED positions to the right. The amount of 

alignment shift in medium range is determined by the modular 

value of the exponent difference 8, 

i.e. MAG_MED. The alignment shift can be formulated as: 

 

(−1)𝑆𝐼𝐺𝑁_𝑀𝐸𝐷. 〈𝑀𝐴𝐺_𝑀𝐸𝐷〉 = {
𝛿 − 1

𝛿
 𝑖𝑓 64 ≥𝛿≥1
𝑖𝑓 0≥𝛿≥−63

                     (3) 

 

 

B. Second Clock Cycle Operation 

This is the second stage of the pipelining mechanism. The two 

"preprocessed" significands are added and the result is rounded 

in accordance with the IEEE standard rounding algorithm. Here 

the rounding algorithm from [4] has been implemented. At the 

end, it is normalized. The output result is a 64 bit binary floating 

point number. 

 

rnd (sum) = rnd ((-1)sa .2ea .fa+(-1)(SOP+sb) .2eb .fb         (4) 

 

C. Algorithm for Addition 

Let s1; e1; f1 and s2; e2; f2 be the signs, exponents, and 

significands of two input floating-point operands, N1 and N2, 

respectively. Given these two numbers, Figure 4 shows the 

flowchart of the standard floating-point adder algorithm. A 

description of the algorithm is as follows. 

 

1.   The two operands, N1 and N2 are read in and compared for 

denormalization and infinity. If numbers are denormalized, set 

the implicit bit to 0 otherwise it is set to 1. At this point, the 

fraction part is extended to 53 bits. 

2.   The two exponents, e1 and e2 are compared using 8-bit 

subtraction. If e1 is less than e2, N1 and N2 are swapped i.e. 

previous f2 will now be referred to as f1 and vice versa. 

3.   The smaller fraction, f2 is shifted right by the absolute 

difference result of the two exponents’ subtraction. Now both 

the numbers have the same exponent. 

4.   The two signs are used to see whether the operation is a 

subtraction or an addition. 

5.   If the operation is a subtraction, the bits of the f2 are inverted. 

6.   Now the two fractions are added using a 2’s complement 

adder. 

7.   If the result sum is a negative number, it has to be inverted 

and a 1 has to be added to the result. 

8.  The result is then passed through a leading one detector or 

leading zero counter. This is the first step in the normalization 

step. 

9.  Using the results from the leading one detector, the result is 

then shifted left to be normalized. In some cases, 1-bit right shift 

is needed. 

10. The result is then rounded towards nearest even, the default 

rounding mode. 

11. If the carry out from the rounding adder is 1, the result is left 

shifted by one. 

12. Using the results from the leading one detector, the exponent 

is adjusted. The sign is computed and after overflow and 

underflow check, the result is registered 

 

5. Implementation Details 

The implementation of this algorithm is has been accomplished 

using the Xilinx XC3S1500 device of Spartan 3 family. The 

Xilinx ISE 14.1 is used to generate a code and also a designing 

tool. Also there are scopes for further development. A report 

has been generated for estimation of usage of resources in 

below table. I 

 

Table no. I Device Utilization Summary 

 

 Device 

Utilization         

Summary 

  

Logic Utilization Used Available Utilization 

No. of slice LUTs 333 407 47% 
No. of fully used 

LUT-FF pairs 
604 1408 42% 

No. of bounded 

IOBs 
190 108 178% 

No. of 

BUFS/BUFGCTRL 
1 24 4% 

 

6. Simulation Results 

The Floating point adder has been simulated using Xilinx 14.1. 

While the device utilization summary has been showed above. 

Figure 3(a) and 3(b) shows the simulation result of addition 

and subtraction respectively. And Figure 3(c) shows a 

schematic diagram of a design. 

 

 

Fig no. 3(a) Simulation result of Addition 

 

Fig No. 3(b) Simulation result of Subtraction 
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Fig No. 3(c) Schematic View of Design 

Conclusion 

This paper has successfully demonstrated an implementation of 

a high speed, IEEE 754, double precision floating point adder 

with a significant decrease in latency. This manifest in the fact 

that FPGA based embedded systems has a higher advantage of 

lower computational aspects. Also, an implementation work of 

this algorithm, on the Xilinx Spartan-3 FPGA would give results 

with further improvement. 
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