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Abstract: Nowadays graphical analysis has become the centrepiece of many of the studies & common day problems. Because of 

the ability of the graph to adept & contain data of various forms & then interpret information it is in demand everywhere, many of 

the big problems are being analysed through graphical networks. Graphical data mining a branch evolved out of data mining has 

today become such a vast subject of study, research, analysis   & case-review. This in itself shows the broad scope on which 

graphs, graphical analysis & graphical mining is being carried out today. The basic reason for this popularity of graphs is their 

ease with which they can accommodate data of various types & then can give result across various domains. So in such an 

environment it becomes equally important to study various metrics of graph that help in such studies. Modularity is one of those 

metrics, whose importance has grown manifold in studying & researching social networks, behavioural pattern networks & geo-

graphical networks. In this study a force directed approach has been used to analyse modularity in a graph since it facilitates the 

dynamic structure of graphs that changes with respect to force applied on it similarly like a real time graphical pattern changes. 

Modularity is one property which can be used in multiple networks to study & analyse various parameters on which efficiency & 

capacity of networks is evaluated. Also with the advent of big data, business intelligence the need for information which gives 

multi-dimensional & multi-value relationships has grown manifold & graphical analysis especially in terms of modularity or 

community detection can give us plenty of such information. In this paper a very novel & realistic approach has been taken that 

takes into account the ever changing & dynamic nature of real time networks, based upon that a force directed approach has been 

taken which involves calculating the force exerted on graph at any time then finding corresponding modularity for that force. 

Three case of force have been analysed all for same graph to differentiate the effect of force on same graph. Three different types 

of forces act in a graph – attractive forces, repulsive forces & displacement force. 

  Keywords: modularity, force directed, graphical networks, 

communities, maximum force, minimum force, Average force.  

1. Introduction  

Graphical analysis & information extraction from graph has 

become one of the most trending techniques for study of various 

graphs & graphical networks, a graph is analyzed on multiple 

metrics depending upon what kind of information we are 

looking for but modularity always forms one of the most 

important metric to be studied since it is modularity that tells us 

about the heterogeneity of data contained in graph, the amount 

of multi-dimensional information in a graph & extent of multi 

valued relationships in a graph. The community detection or 

modularity has become a very integral part of any graphical 

analysis almost all the graphical analysis or operations related to 

graphical data mining are incomplete without any reference to 

it, modularity in terms of graph is defined as the partition of the 

graph upon the basis of certain parameters which are actually 

communities of graph for example- a graph depicting 

population of a city can be divided into four directions-east, 

west, north & south then these four directions are four 

communities of the graph & the modularity of graph is four. 

Thus we can say that a community in a graph is set of nodes that 

have same attributes, shape, property & connected to each other 

in multiple ways [1]. 

 There are also numerous practical utilities of finding 

modularity in a graph: 

a) It helps in partitioning social networks on the basis of groups 

of users belonging to a particular type such that they can be held 

as one community based upon their likes, followings & 

friendships making social networks a more organized place.  

 

b) Also in web search we can classify the type of information 

accessed depending upon whether it’s related to technology, 

science, arts, history, sports etc thus enabling search engines & 

portals to enhance their searching time [1]. 

c) Frequently, the nodes in a densely knit community share a 

salient real-world property. For social networks, this could be a 

common interest or location; for web pages, a common topic or 

language; and for biological networks, a common function. 

Thus, by analyzing structural features of a network, one can 

infer semantic attributes. 

d) By identifying communities, one can study the communities 

individually. Different communities often exhibit significantly 

different properties, making a global analysis of the network 

inappropriate. Instead, a more detailed analysis of individual 

communities leads to more meaningful insights, for instance 

into the roles of individuals [2]. 
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2. Nature Of Work  
The present paper deals with enhancing modularity of a graph 

by the use of Fruchterman & Reingold algorithm based upon the 

principle of force directed algorithm. Essentially this algorithm 

has its roots in physical system or to say in simple terms it has 

been derived from mechanical systems. When described in 

mechanical system it is like laying out a graph in physical plain 

where nodes are replaced by steel rings & edges are replaced by 

springs.  The vertices are placed in some initial order such that 

they are not too far from each other & also to let the spring 

forces on the rings achieve a minimal energy state [3]-[4]. 

  The two basic principles that have been kept in regards for this 

approach are :                    

 a) Vertices that are connected through an edge should be drawn 

near to each other.                 

 

 

 

b) But two vertices should not be too close such that they repel 

each other[3]. 

 

                                         

 

 

                                                   Springs 

 

 

                   Fig 1.1 physical model of force directed    approach. 

  The position of vertices placing will depend upon the nature & 

size of the graph if the graph is large then we are looking for 

higher number of communities so vertices will be nearer to each 

other whereas in case of smaller graph it will be vice-versa. 

Also how many communities we find in a graph depends upon 

the strength of forces acting in the graph if there is high amount 

of force then less chance of equilibrium being achieved so lesser 

communities whereas if force acting in the graph is less then 

more chances of equilibrium therefore more communities can be 

detected [3]-[4]-[5]-[6].     

 

                                                                            

 

                                            Community 1 

 

 

 

              Fig 1.2 Sparse Graph with lesser communities.          

 

                

 

                         Community 1                      Community 2 

 

 

 

                   Fig 1.3 Dense Graph with more communities.   

 

 

 

 

3. Previous Work  

The previous work that has been done under this subject is of  

two categories: 

i) Modularity maximization for community detection.                                                     

ii) Statistical & min-max model of finding modularity. 

 

3.1. Modularity Maximization Method  

In this method the approach used was the technique of solving 

and rounding fractional mathematical programs to the problem 

of community discovery, and propose two new algorithms for 

finding modularity-maximizing clustering. Two major 

algorithms have been used in this approach.  
 The first algorithm was based on a linear programming (LP) 

relaxation of an integer programming (IP) formulation. The LP 

relaxation put nodes “partially in the same cluster”. A 

“rounding” procedure was used due to Charikar [7] for the 

problem of Correlation Clustering. The idea of the algorithm is 

to interpret “partial membership of the same cluster” as a 

distance metric, and group together nearby nodes [7]-[8]. 
  The second algorithm is based on a vector programming (VP) 

relaxation of a quadratic program (QP). It recursively splits one 

partition into two smaller partitions while a better modularity 

can be obtained. It is similar in spirit to an approach recently 

proposed by Newman [9, 10], which repeatedly divides clusters 

based on the first eigenvector of the modularity matrix. 

Newman’s approach can be thought of as embedding nodes in 

the interval [−1, 1], and then cutting the interval in the middle. 

The VP embeds nodes on the surface of a high-dimensional 

hyper sphere, which is then randomly cut into two halves 

containing the nodes. The approach is thus very similar to the 

algorithm for Maximum Cut due to Goemans and Williamson 

[11]. 
  The method of modularity maximization is further classified 

into two types on which previously work has been done : 

 

3.1.1 The LP Rounding Algorithm  

Our LP rounding algorithm is essentially identical to one 

proposed by Charikar [7] for the Correlation Clustering 

problem. In correlation clustering, one is given an undirected 

graph  

  G = (V,E) with each edge labelled either ‘+’ (modelling 

similarity between endpoints) or ‘−’ (modelling dissimilarity). 
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The goal is to partition the graph into clusters such that few 

vertex pairs are classified incorrectly. Formally, in the Min-

Disagree version of the problem, the goal is to minimize the 

number of ‘−’ edges inside clusters plus the number of ‘+’ edges 

between clusters. In the Max-Agree version, which is not as 

relevant to our approach, the goal is to maximize the number of 

‘+’ edges inside clusters plus the number of ‘−’ edges between 

clusters. Using the same 0-1 variables xu,v as we did above, 

Charikar [7] formulate Min-Disagree as follows [9]-[10]-[12]. 

 Minimize P(u,v)∈E+ xu,v +P(u,v)∈E− (1 − xu,v) subject to xu,w _ 

xu,v + xv,w for all u, v,w xu,v 2 {0, 1} for all u, v, where E+ 

and E− denote the sets of edges labelled ‘+’ and ‘−’, 

respectively. The objective can be rewritten as |E+|−P(u,v)∈E 

μu,v(1−xu,v), where μu,v is 1 for ‘+’ edges and -1 for ‘−’ edges. 

The objective is minimized when P(u,v)∈E μu,v(1−xu,v) is 

maximized; thus, except for the shift by the constant |E+|, Min-

Degree takes on the same form as modularity maximization 

with mu,v = μu,v[10]-[13]. 

 
3.1.2 Vector Programming Based Algorithm  

This algorithm used a ‘heirarichal clustering’, In the sense that 

the clustering is obtained by repeatedly finding a near-optimal 

division of a larger cluster. For two reasons, this clustering is 

not truly hierarchical: First, we do not seek to optimize a global 

function of the entire hierarchy, but rather optimize each split 

locally. Second,  

 

 

we again apply a local search based post-processing step to 

improve the solution, thus rearranging the clusters. Despite 

multiple recently proposed hierarchical clustering algorithms, 

there is far from general agreement on what objective functions 

would capture a “good” hierarchical clustering. Indeed, different 

objective functions can lead to significantly different clustering. 

While our clustering is not truly hierarchical, the order and 

position of the splits that it produces still reveal much high level 

of information about the network and its clusters. This  

approach is aimed for the best division at each level 

individually, requiring a partition into two clusters at each level.  

Clusters are recursively subdivided as long as an improvement 

is possible. Thus, a solution hinges on being able to find a good 

partition of a given graph into two communities [14]-[15]. 

 

 

3.2 Max-Min Modularity Method  

The idea of MM Modularity is based on the intuition that a good 

division of a network into communities is not merely one in 

which the number of edges between groups is smaller than 

expected, it is also one in which the number of unrelated pairs 

within group  is smaller than expected. Only if both the numbers 

of between-group edges and within-group unrelated pairs are 

significantly lower than would be expected purely by chance, 

can we justify claim to have found significant community 

structure. Equivalently, we can examine the number of edges 

within communities and unrelated pairs between communities 

and look for divisions of the network in which this number is 

higher than expected. These two approaches are equivalent 

since the total number of edges/pairs is fixed and any 

edges/pairs that do not lie between communities must 

necessarily lie inside one of them [16]. 

  Generally speaking, our evaluation attempts to maximize the 

number of edges within groups and minimize the number of 

unrelated pairs from the user defined unrelated pair set within 

groups at the same time, therefore we named it Max-Min 

Modularity. But maximizing the edge number within groups 

does not automatically minimize the unrelated pair number, e.g., 

if we have no network knowledge, thus have no related pairs, 

and unrelated pairs as disconnected node pairs, consider a node 

that only connects one member of a community with size n, 

maximizing the within-group edge number by including that 

node in this community would increase the unrelated pair 

number by n – 1. [17]. 

 
 
4.  Present Work Undertaken 

As we saw with the above both approaches that both of them 

requires a lot of preliminaries parameters for analysing 

modularity in any graph as well as lot of calculations have to be 

taken into account. 
  So the present approach is much more simplified version of 

finding modularity or community detection in any graph. The 

approach involves application of Fruchterman Reingold [3] 

algorithm on gephi tool to analyze modularity. The basic 

principle involved here is that the algorithm gives graph a 

circular shape so once the graph attains a final spherical shape 

the nodes that are in central are connected nodes with much 

higher degree connectivity & part of multiple communities. 

Whereas the nodes that are formed on outer rings are less 

connected nodes with lesser degree of connectivity. This 

alignment of nodes in a graph in spherical shape forms the basis 

of this research & study, the following figure explains how 

nodes are formed in this approach. 

 

 
Fig 1.4 Alignment of nodes in the graph showing U.S airline 

flight plan. 

 
In the above figure the nodes that are at centre are highly 

connected nodes having higher chance of being found out in 

community detection whereas the fringe nodes on outer lines are 

less connected nodes with lesser chance of being found out in a 

community. 

  Since the algorithm that has been used here is a force directed 

algorithm so the amount of force that exists in a graph or in 

other words that is exerted on graph plays a major role in 

deciding the number of communities that we can get for a 

graph. So the major emphasis that has been given here is to 

analyse how the force exertion in different conditions results in 

founding of different set of communities for same graph. 
  The three major kind of forces that exists in this algorithm is 

attraction, repulsion & displacement. 

a)ATTRACTIVE FORCES : Force acting between nodes that 

are connected to each other. 

b)REPULSIVE FORCES : Force acting between nodes that are 

disconnected to each other. 
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c)DISPLACEMENT FORCES : Force that finally settles the 

node after above two forces have acted upon it. 
 

                              Attractive Forces                                 

                             Connected Nodes      

                                      Fig. 1.5               

                                 

                                  Repulsive Forces                               

                               Disconnected Nodes 

                                       Fig. 1.6 

 

                                    Displacement force        

                                    Connected Nodes      

 

 

                                  Disconnected Node 

 

                                            Fig. 1.7 

 

 

 So basically three different cases where used for this study : 

i)Average Force Calculation : In this case we try to find out the 

modularity or number of communities founded when all forces 

acting where of average nature. 

ii)Maximum Force Calculation : In this case we try to find out 

the modularity or number of communities founded when all 

forces acting where of maximum nature. 

iii)Minimum Force Calculation : In this case we try to find out 

the modularity or number of communities founded when all 

forces acting where of minimum nature. 

 

 
5. Results  

The karate club [18] interaction dataset has been taken for the 

purpose of analysing modularity for different cases. The 

communities obtained where according to interactions taking 

place in communities & force acting in the graph 

 

  5.1 Case 1 - Average force Modularity 

 

    

 

  Fig. 1.8 Showing average force taken for calculation. Force = 

1.0 [average] 

 

             

  

Fig. 1.9 Showing four communities obtained for average force 

calculation. 

 

     

     

Fig. 1.10 Graphical representation of four communities obtained 

5.1.1 Result Analysis 

The result for average force shows that when average amount of 

force is acting within the graph then number of communities 

that will be detected is also in medium range. 
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  Here we took force resolution= 1.0, so we got 4 communities 

which are represented in graphical manner through four 

different colours. In graphical format we can see the spherical 

alignment in which the algorithm adapts itself has connected 

communities like red & blue at centre whereas dispersed 

communities like violet & green are more settled on outer areas. 

Thus establishing the fact which formed the basis  of this study. 

 

 5.2 Case 2 - Minimum force Modularity 

                                            

  

 Fig. 1.11 Showing minimum force taken for   calculation.  

  Force = 0.5 [minimum] 

 

 

 
 Fig. 1.12 Showing nine communities obtained for minimum 

force calculation. 

 

                             

   Fig. 1.13 Graphical representation of nine communities 

obtained. 

 

5.2.1 Result Analysis  

The result for minimum force shows that when minimum 

amount of force is acting within the graph then number of 

communities that will be detected is in maximum range. This 

inverse relationship between force applied & number of 

communities detected is because there is a direct relationship 

between nodes movement due to application of force, so when 

there is minimum force movement nodes do not change their 

position & they form maximum communities. 

  In this case the force resolution was taken 0.5 & nine 

communities were detected. The graphical representation 

depicts all of them but since the number of communities is 

much more this time so we do not get such a strong connected 

& disconnected node contrast like we got in average force case. 

 

 

   5.3 Case 3 - Maximum force Modularity 

       

   

Fig. 1.14 Showing maximum force taken for   calculation. 

Force = 1.6 [maximum] 

 

                      

 
Fig. 1.15 Showing two communities obtained for maximum 

force calculation. 
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Fig. 1.16 Graphical representation of two communities 

obtained. 

 

 

 

5.3.1 Result Analysis  

The result for maximum force shows that when maximum 

amount of force is acting within the graph then number of 

communities that will be detected is in minimum range. The 

relationship is inverse & vice-versa to case of minimum forces. 

Reason is same only the order gets changed, because this time 

the force acting in graph leads to change in position or 

displacement of nodes thus they are not in their fixed position & 

very few communities are detected. Here we used force 

resolution = 1.6 but only two communities were obtained. It is 

also a case of submerging of communities leading to smaller 

communities getting dissolved & only larger communities 

remaining. 

 

 

6. Conclusion  

So we saw that we got three different results for three different 

kind of force intensity, but all belonging to same graph. For all 

the cases the .count of modularity or number of communities 

changes. In first case when force was “average” we got “four 

communities” since there was not much distortion in the graph 

& we got optimum number of communities. In second case 

when there was “minimum force” acting in the graph we got 

“nine communities” which were maximum this happened 

because the amount of distortion happening in the graph was 

minimum so all nodes retained their position & hence their 

communities, In third case it was vice-versa of second case 

because of maximum distortion nodes changed their position a 

lot & in last only “two communities” could be found which 

were minimum. 

  Thus the study showed that in force directed graph the amount 

of force exerting in the graph plays a major role in the forming 

of communities, the lesser the force, distortion in graph is also 

less & more communities are founded, whereas increasing force 

leads to inverse changes. In case of average forces the results 

also lie between maximum & minimum. 
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