
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 4 April 2017, Page No. 20994-21005

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20994

Detecting Malicious Facebook Applications
Nayana K N, Anjana Sharma ,

Mtech Student , Dept of CSE, NHCE , Bangalore , Karnataka , India

 Sr Asst Prof, Dept of CSE, NHCE , Bangalore , Karnataka , India

ABSTRACT
With 20 million installs a day [1], third-party apps are a major reason for the popularity and addictiveness of Facebook.

Unfortunately, hackers have realized the potential of using apps for spreading malware and spam. The problem is already

significant, as we find that at least 13% of apps in our dataset are malicious. So far, the research community has focused on

detecting malicious posts and campaigns.

In this paper, we ask the question: given a Facebook application, can we determine if it is malicious? Our key contribution is in

developing FRAppE—Facebook‟s Rigorous Application Evaluator— arguably the first tool focused on detecting malicious apps

on Facebook.

To develop FRAppE, we use information gathered by observing the posting behavior of 111K Facebook apps seen across 2.2

million users on Facebook. First, we identify a set of features that help us distinguish malicious apps from benign ones.

For example, we find that malicious apps often share names with other apps, and they typically request fewer permissions than

benign apps. Second, leveraging these distinguishing features, we show that FRAppE can detect malicious apps with 99.5%

accuracy, with no false positives and a low false negative rate (4.1%). Finally, we explore the ecosystem of malicious Facebook

apps and identify mechanisms that these apps use to propagate. Interestingly, we find that many apps collude and support each

other; in our dataset, we find 1,584 apps enabling the viral propagation of 3,723 other apps through their posts. Long-term, we see

FRAppE as a step towards creating an independent watchdog for app assessment and ranking, so as to warn

Facebook users before installing apps.

Keywords
Facebook Apps, Malicious Apps, Profiling Apps, Online

Social Networks

1. INTRODUCTION

Online social networks (OSN) enable and encourage third

party applications (apps) to enhance the user experience on

these platforms. Such enhancements include interesting or

entertaining ways of communicating among online friends,

and diverse activities such as playing games or listening to

songs. For example, Facebook provides developers an API

[10] that facilitates app integration into the Facebook user-

experience. There are 500K apps available on Facebook and

on average, 20M apps are installed every day [1].

Furthermore, many apps have acquired and maintain a large

userbase. For instance, FarmVille and CityVille apps have

26.5M and 42.8M users to date.

Recently, hackers have started taking advantage of the

popularity of this third-party apps platform and deploying

malicious applications. Malicious apps can provide a

lucrative business for hackers, given the popularity of OSNs,

with Facebook leading the way with 900M active users [12].

There are many ways that hackers can benefit from a

malicious app: (a) the app can reach large numbers of users

and their friends to spread spam, (b) the app can obtain users‟

personal information such as email address, home town, and

gender, and (c) the app can “re-produce" by making other

malicious apps popular. To make matters worse, the

deployment of malicious apps is simplified by ready-to-use

toolkits starting at. In other words, there is motive and

opportunity, and as a result, there are many malicious apps

spreading on Facebook every day.

Despite the above worrisome trends, today, a user has very

limited information at the time of installing an app on

Facebook. In other words, the problem is: given an app‟s

identity number (the unique identifier assigned to the app by

Facebook), can we detect if the app is malicious? Currently,

there is no commercial service, publicly-available

information, or research-based tool to advise a user about the

risks of an app. As we show in Sec. 3, malicious apps are

widespread and they easily spread, as an infected user

jeopardizes the safety of all its friends.

So far, the research community has paid little attention to

OSN apps specifically. Most research related to spam and

malware on

Facebook has focused on detecting malicious posts and social

spam campaigns .A recent work studies how app permissions

and community ratings correlate to privacy risks of Facebook

apps. Finally, there are some community-based

feedbackdriven efforts to rank applications, such as Whatapp

; though
these could be very powerful in the future, so far they have

received little adoption. We discuss previous work in more

detail in Sec. 8.

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20995

In this work, we develop FRAppE, a suite of efficient

classification techniques for identifying whether an app is

malicious or not.

Figure 1: The emergence of AppNets on Facebook. Real

snapshot of 770 highly collaborating apps: an edge between two

apps means that one app helped the other propagate. Average

degree (no. of collaborations) is 195!

To build FRAppE, we use data from MyPageKeeper, a

security app in Facebook [14] that monitors the Facebook

profiles of 2.2 million users. We analyze 111K apps that

made 91 million posts over nine months. This is arguably the

first comprehensive study focusing on malicious Facebook

apps that focuses on quantifying, profiling, and

understanding malicious apps, and synthesizes this

information into an effective detection approach.

Our work makes the following key contributions:

 13% of the observed apps are malicious. We show

that malicious apps are prevalent in Facebook and reach

a large number of users. We find that 13% of apps in our

dataset of 111K distinct apps are malicious. Also, 60%

of malicious apps endanger more than 100K users each

by convincing them to follow the links on the posts

made by these apps, and 40% of malicious apps have

over 1,000 monthly active users each.

 Malicious and benign app profiles significantly differ.

We systematically profile apps and show that malicious

app profiles are significantly different than those of

benign apps. A striking observation is the “laziness" of

hackers; many malicious apps have the same name, as

8% of unique names of malicious apps are each used by

more than 10 different apps (as defined by their app

IDs). Overall, we profile apps based on two classes of

features: (a) those that can be obtained on-demand given

an application‟s identifier (e.g., the permissions required

by the app and the posts in the application‟s profile

page), and (b) others that require a cross-user view to

aggregate information across time and across apps (e.g.,

the posting behavior of the app and the similarity of its

name to other apps).

 The emergence of AppNets: apps collude at

massive scale. We conduct a forensics

investigation on the malicious app ecosystem to

identify and quantify the techniques used to

promote malicious apps. The most interesting result

is that apps collude and collaborate at a massive

scale. Apps promote other apps via posts that point

to the “promoted" apps. If we describe the

collusion relationship of promoting-promoted apps

as a graph, we find 1,584 promoter apps that

promote 3,723 other apps. Furthermore, these apps

form large and highly-dense connected

components, as shown in Fig. 1. Furthermore,

hackers use fast-changing indirection: applications

posts have URLs that point to a website, and the

website dynamically redirects to many different

apps; we find 103 such URLs that point to 4,676

different malicious apps over the course of a

month. These observed behaviors indicate well-

organized crime: one hacker controls many

malicious apps, which we will call an AppNet,

since they seem a parallel concept to botnets.

Figure 2: Steps involved in hackers using malicious applications to get

access tokens to post malicious content on victims’ walls.

 Malicious hackers impersonate applications. We

were surprised to find popular good apps, such as

„FarmVille‟ and „Facebook for iPhone‟, posting

malicious posts. On further investigation, we found

a lax authentication rule in Facebook that enabled

hackers to make malicious posts appear as though

they came from these apps.

 FRAppE can detect malicious apps with 99%

accuracy. Wedevelop FRAppE (Facebook‟s

Rigorous Application Evaluator) to identify

malicious apps either using only features that can

be obtained on-demand or using both on-demand

and aggregationbased app information. FRAppE

Lite, which only uses information available on-

demand, can identify malicious apps with 99.0%

accuracy, with low false positives (0.1%) and false

negatives (4.4%). By adding aggregation-based

information, FRAppE can detect malicious apps

with 99.5% accuracy, with no false positives and

lower false negatives (4.1%).

2. BACKGROUND
In this section, we discuss how applications work on

Facebook, provide an overview of MyPageKeeper (our

primary data source), and outline the datasets that we use in

this paper.

2.1 Facebook Apps

Facebook enables third-party developers to offer services to

its users by means of Facebook applications. Unlike typical

desktop and smartphone applications, installation of a

Facebook application by a user does not involve the user

DOI: 10.18535/ijecs/v6i4.35

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20996

downloading and executing an application binary. Instead,

when a user adds a Facebook application to her profile, the

user grants the application server: (a) permission to access a

subset of the information listed on the user‟s Facebook

profile (e.g., the user‟s email address), and (b) permission to

perform certain actions on behalf of the user (e.g., the ability

to post on the user‟s wall). Facebook grants these

permissions to any application by handing an OAuth 2.0 [4]

token to the application server for each user who installs the

application. Thereafter, the application can access the data

and perform the explicitly-permitted actions on behalf of the

user. Fig. 2 depicts the steps involved in the installation and

operation of a Facebook application.

Operation of malicious applications. Malicious Facebook

applications typically operate as follows.

 Step 1: Hackers convince users to install the app, usually

with some fake promise (e.g., free iPads).

 Step 2: Once a user installs the app, it redirects the user to a

web page where the user is requested to perform tasks, such

as completing a survey, again with the lure of fake rewards.

 Step 3: The app thereafter accesses personal information

(e.g., birth date) from the user‟s profile, which the hackers

can potentially

use to profit.

 Step 4: The app makes malicious posts on behalf of the user

to lure the user‟s friends to install the same app (or some

other malicious app, as we will see later).

This way the cycle continues with the app or colluding apps

reaching more and more users. Personal information or

surveys can be “sold" to third parties [2] to eventually profit

the hackers.

2.2 MyPageKeeper

MyPageKeeper [14] is a Facebook app designed for detecting

malicious posts on Facebook. Once a Facebook user installs

MyPageKeeper, it periodically crawls posts from the user‟s

wall and news feed. MyPageKeeper then applies URL

blacklists as well as custom classification techniques to

identify malicious posts. Our previous work [41] shows that

MyPageKeeper detects malicious posts with high accuracy—

97% of posts flagged by it indeed point to malicious websites

and it incorrectly flags only 0.005% of benign posts.

The key thing to note here is that MyPageKeeper identifies

social malware at the granularity of individual posts, without

grouping together posts made by any given application. In

other words, for every post that it crawls from the wall or

news feed of a subscribed user, MyPageKeeper‟s

determination of whether to flag that post does not take into

account the application responsible for the post. Indeed, a

large fraction of posts (37%) monitored by MyPage-Keeper

are not posted by any application; many posts are made

manually by a user or posted via a social plugin (e.g., by a

user clicking „Like‟ or „Share‟ on an external website). Even

among malicious posts identified by MyPageKeeper, 27% do

not have an associated application.

MyPageKeeper‟s classification primarily relies on a Support

Vector Machine (SVM) based classifier that evaluates every

URL by combining information obtained from all posts

containing that URL. Examples of features used in

MyPageKeeper‟s classifier include a) the presence of spam

keywords such as „FREE‟, „Deal‟, and „Hurry‟ (malicious

posts are more likely to include such keywords than normal

posts), b) the similarity of text messages (posts in a spam

campaign tend to have similar text messages across posts

containing the same URL), and c) the number of „Like‟s and

comments (malicious posts receive fewer „Like‟s and

comments). Once a URL is identified as malicious,

MyPageKeeper marks all posts containing the URL as

malicious.

2.3 Our Datasets

In the absence of a central directory of Facebook apps 1, the

basis of our study is a dataset obtained from 2.2M Facebook

users, who are monitored by MyPageKeeper [14].

Our dataset contains 91 million posts from 2.2 million walls

monitored by MyPageKeeper over nine months from June

2011 to March 2012. These 91 million posts were made by

111K apps, which forms our initial dataset D-Total, as shown

in Table 1. Note that, out of the 144M posts monitored by

MyPageKeeper during this period, here we consider only

those posts that included a nonempty “application" field in

the metadata that Facebook associates with every post.

The D-Sample dataset: Finding malicious applications. To

identify malicious Facebook applications in our dataset, we

start with a simple heuristic: if any post made by an

application was flagged as malicious by MyPageKeeper, we

mark the application as malicious; as we explain later in

Section 5, we find this to be an effective technique for

identifying malicious apps. By applying this heuristic, we

identified 6,350 malicious apps. Interestingly, we find that

several popular applications such as „Facebook for Android‟

were also marked as malicious in this process. This is in fact

the result of hackers exploiting Facebook weaknesses as we

describe later in Section 6.2. To avoid such mis-

classifications, we verify applications using a whitelist that is

created by considering the most popular apps and significant

manual effort. After whitelisting, we are left with 6,273

malicious applications (D-Sample dataset in Table 1). Table

2 shows the top five malicious applications, in terms of

number of posts per application.

The D-Sample dataset: Including benign applications. To

select an equal number of benign apps from the initial D-

Total dataset, we use two criteria: (a) none of their posts were

identified as malicious by MyPageKeeper, and (b) they are

“vetted" by Social Bakers [19], which monitors the "social

marketing success" of apps. This process yields 5,750

applications, 90% of which have a user rating of at least 3 out

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20997

of 5 on Social Bakers. To match the number of malicious

apps, we add the top 523 applications in DTotal (in terms of

number of posts) and obtain a set of 6,273 benign

applications. The D-Sample dataset (Table 1) is the union of

these 6,273 benign applications with the 6,273 malicious

applications obtained earlier. The most popular benign apps

are FarmVille, Facebook for iPhone, Mobile, Facebook for

Android, and Zoo World.

For profiling apps, we collect the information for apps that is

readily available through Facebook. We use a crawler based

on the Firefox browser instrumented with Selenium [18].

From March to May 2012, we crawl information for every

application in our D Sample dataset once every week. We

collected app summaries and their permissions, which

requires two different crawls as discussed below.

The D-Summary dataset: Apps with app summary. We

collect app summaries through the Facebook Open graph

API, which is made available by Facebook at a URL of the

form https://graph.facebook.com/App_ID; Facebook has a

unique identifier for each application. An app summary

includes several pieces of information such as application

name, description, company name, profile link, and monthly

active users. If any application has been removed from

Facebook, the query results in an error. We were able to

gather the summary for 6,067 benign and 2,528 malicious

apps (D-Summary dataset in Table 1). It is easy to

understand why malicious apps were more often removed

from Facebook.

The D-Inst dataset: App permissions. We also want to

study the permissions that apps request at the time of

installation. For every application App_ID, we crawl

https://www.facebook.com/apps/application.php?id=App_ID

, which usually redirects to the application‟s installation

URL. We were able to get the permission set for 487

malicious and 2,255 benign applications in our dataset.

Automatically crawling the permissions for all apps is not

trivial, as different apps have different redirection processes,

which are intended for humans and not for crawlers. As

expected, the queries for apps that are removed from

Facebook fail here as well.

The D-ProfileFeed: Posts on the app profile. Users can

make posts on the profile page of an app, which we can call

the profile feed of the app. We collect these posts using the

Open graph API from Facebook. The API returns posts

appearing on the application‟s page, with several attributes

for each post, such as message, link, and create time. Of the

apps in the D-Sample dataset, we were able to get the posts

for 6,063 benign and 3,227 malicious apps. We construct the

D-Complete dataset by taking the intersection of D-

Summary, D-Inst, and D-ProfileFeed datasets. Coverage:

While the focus of our study is to highlight the differences

between malicious and benign apps and to develop a sound

methodology to detect malicious apps, we cannot aim to

detect all malicious apps present on Facebook. This is

because MyPage-Keeper has a limited view of Facebook

data—the view provided by its subscribed users—and

therefore it cannot see all the malicious apps present on

Facebook. However, during the nine month period

considered in our study, MyPageKeeper observed posts from

111K apps, which constitutes a sizable fraction (over 20%) of

the approximately 500K apps present on Facebook [25].

Moreover, since MyPageKeeper monitors posts from 2.4

million walls on Facebook, any malicious app that affected a

large fraction of Facebook users is likely to be present in our

dataset. Therefore, we speculate that malicious apps missing

from our dataset are likely to be those that affected only a

small fraction of users.

Data privacy: Our primary source of data in this work is our

MyPageKeeper Facebook application, which has been

approved by UCR‟s IRB process. In keeping with

Facebook‟s policy and IRB requirements,data collected by

MyPageKeeper is kept private, since it crawls posts from the

walls and news feeds of users who have explicitly given it

permission to do so at the time of MyPageKeeper

installation. In addition, we also use data obtained via

Facebook‟s open graph API, which is publicly accessible to

anyone.

Figure 3: Clicks received by bit.ly links posted by malicious apps.

Figure 4: Median and maximum MAU achieved by malicious apps.

3. PREVALENCE OF MALICIOUS APPS
The driving motivation for detecting malicious apps stems

from the suspicion that a significant fraction of malicious

posts on Facebook are posted by apps. We find that 53% of

malicious posts flagged by MyPageKeeper were posted by

malicious apps. We further quantify the prevalence of

malicious apps in two different ways.

60% of malicious apps get at least a hundred thousand

clicks on the URLs they post. We quantify the reach of

malicious apps by determining the number of clicks on the

the links included in malicious posts. For each malicious app

in our D-Sample dataset, we identify all bit.ly URLs in posts

made by that application.

We focus on bit.ly URLs since bit.ly offers an API [6] for

querying the number of clicks received by every bit.ly link;

thus our estimate of the number of clicks received by every

application is strictly a lower bound. On the other hand, each

bit.ly link that we consider here could potentially also have

received clicks from other sources on web (i.e., outside

Facebook); thus, for every bit.ly URL, the total number of

clicks it received is an upper bound on the number clicks

received via Facebook.

Across the posts made by the 6,273 malicious apps in the

DSample dataset, we found that 3,805 of these apps had

posted 5,700 bit.ly URLs in total. We queried bit.ly for the

DOI: 10.18535/ijecs/v6i4.35

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20998

click count of each URL. Fig. 3 shows the distribution across

malicious apps of the total number of clicks received by

bit.ly links that they had posted. We see that 60% of

malicious apps were able to accumulate over 100K clicks

each, with 20% receiving more than 1M clicks each. The

application with the highest number of bit.ly clicks in this

experiment—the „What is the sexiest thing about you?‟

app— received 1,742,359 clicks.

40% of malicious apps have a median of at least 1000

monthly active users. We examine the reach of malicious

apps by inspecting the number of users that these

applications had. To study this,we use the Monthly Active

Users (MAU) metric provided by Facebook for every

application. The number of Monthly Active Users is a

measure of how many unique users are engaged with the

application
Figure 5: Comparison of apps whether they provide category, company

name or description of the app. over the last 30 days in

activities such as installing, posting, and liking the app. Fig. 4

plots the distribution of Monthly Active Users of the

malicious apps in our D-Summary dataset. For each app, the

median and maximum MAU values over the three months

are shown. We see that 40% of malicious applications had a

median MAU of at least 1000 users, while 60% of malicious

applications achieved at least 1000 during the three month

observation period. The top malicious app here—„Future

Teller‟—had a maximum MAU of 260,000 and median of

20,000.

4. PROFILING APPLICATIONS
Given the significant impact that malicious apps have on

Facebook, we next seek to develop a tool that can identify

malicious applications. Towards developing an

understanding of how to build such a tool, in this section, we

compare malicious and benign apps with respect to various

features.

As discussed previously in Section 2.3, we crawled Facebook

and obtained several features for every application in our

dataset.

We divide these features into two subsets: on-demand

features and aggregation-based features. We find that

malicious applications significantly differ from benign

applications with respect to both classes of features.

4.1 On-demand features

The on-demand features associated with an application refer

to the features that one can obtain on-demand given the

application‟s ID. Such metrics include app name, description,

category, company, and required permission set.

4.1.1 Application summary

Malicious apps typically have incomplete application

summaries. First, we compare malicious and benign apps

with respect to attributes present in the application‟s

summary—app description, company name, and category.

Description and company are free-text attributes, either of

which can be at most 140 characters.

On the other hand, category can be selected from a

predefined (by Facebook) list such as „Games‟, „News‟, etc.

that matches the app functionality best. Application

developers can also specify the company name at the time of

app creation. For example, the „Mafia Wars‟ app is

configured with description as „Mafia Wars: Leave a legacy

behind‟, company as „Zynga‟, and category as „Games‟. Fig.

5 shows the fraction of malicious and benign apps in the

DSummary dataset for which these three fields are non-

empty. We see that, while most benign apps specify such

information, very rarely malicious apps do so. For example,

only 1.4% of malicious apps have a non-empty description,

whereas 93% of benign apps configure their summary with a

description. We find that the benign

Figure 6: Top 5 permissions required by benign and malicious apps.

Figure 7: Number of permissions requested by every app.apps that do

not configure the description parameter are typically less popular (as

seen from their monthly active users).

4.1.2 Required permission set

97% of malicious apps require only one permission from

users. Every Facebook application requires authorization by a

user before the user can use the app. At the time of

installation, every app requests the user to grant it a set of

permissions that it requires. These permissions are chosen

from a pool of 64 permissions pre-defined by Facebook [16].

Example permissions include access to information in the

user‟s profile such as gender, email, birthday, and friend list,

and permission to post on the user‟s wall.

We see how malicious and benign apps compare based on the

permission set that they require from users. Fig. 6 shows the

top five permissions required by both benign and malicious

apps. Most malicious apps in our D-Inst dataset require only

the „publish stream‟ permission (ability to post on the user‟s

wall). This permission is sufficient for making spam posts on

behalf of users. In addition, Fig. 7 shows that 97% of

malicious apps require only one permission, whereas the

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20999

same fraction for benign apps is 62%. We believe that this is

because users tend not to install apps that require larger set of

permissions; Facebook suggests that application developers

do not ask for more permissions than necessary since there is

a strong correlation between the number of permissions

required by an app and the number of users who install it [8].

Therefore, to maximize the number of victims, malicious

apps seem to follow this hypothesis and require a small set of

permissions.

4.1.3 Redirect URI

Malicious apps redirect users to domains with poor

reputation. In an application‟s installation URL, the „redirect

URI‟ parameter refers to the URL where the user is

redirected to once she installs the app. We extracted the

redirect URI parameter from the installation URL for apps in

the D-Inst dataset and queried the trust reputation scores for

these URIs from WOT [22]. Fig. 8 shows the corresponding

score for both benign and malicious apps. WOT assigns a

score between 0 and 100 for every URI, and we assign a

Figure 8: WOT trust score of the domain that apps redirect to upon

installation.

Table 3: Top five domains hosting malicious apps in D-Inst dataset.

score of �1 to the domains for which the WOT score is not

available.

We see that 80% of malicious apps point to domains for

which WOT does not have any reputation score, and in

addition, 95% of malicious apps have a score less than 5. In

contrast, we find that 80% of benign apps have redirect URIs

pointing to the apps.facebook.com domain and therefore

have higher WOT scores. We speculate that malicious apps

redirect users to web pages hosted outside of Facebook so

that the same spam/malicious content, e.g., survey scams, can

also be propagated by other means such as email and Twitter

spam.

Furthermore, we found several instances where a single

domain hosts the URLs to which multiple malicious apps

redirect upon installation.

For example, thenamemeans2.com hosts the redirect URI for

138 different malicious apps in our D-Inst dataset. Table 3

shows the top five such domains; these five domains host the

content for 83% of the 491 malicious apps in the D-Inst

dataset.

4.1.4 Client ID in app installation URL

78% of malicious apps trick users into installing other apps

by using a different client ID in their app installation URL.

For a Facebook application with ID A, the application

installation URL is

https://www.facebook.com/apps/application.php?id=A.

When any user visits this URL, Facebook queries the

application server registered for app A to fetch several

parameters, such as the set of permissions required by the

app. Facebook then redirects the user to a URL which

encodes these parameters in the URL. One of the parameters

in this URL is the „client ID‟ parameter. If the user accepts to

install the application, the ID of the application which she

will end up installing is the value of the client ID parameter.

Ideally, as described in the Facebook app developer tutorial

[8], this client ID should be identical to the app ID A, whose

installation URL the user originally visited. However, in our

D-Inst dataset, we find that 78% of malicious apps use a

client ID that differs from the ID of the original app, whereas

only 1% of benign apps do so. A possible reason for this is to

increase the survivability of apps. As we show later in Sec. 6,

hackers create large sets of malicious apps with similar

names, and when a user visits the installation URL for one of

these apps, the user is randomly redirected to install any one

of these apps. This ensures that, even if one app from the set

gets blacklisted, others can still survive and propagate on

Facebook.

Figure 9: Number of posts in app profile page.

4.1.5 Posts in app profile

97% of malicious apps do not have posts in their profiles. An

application‟s profile page presents a forum for users to

communicate with the app‟s developers (e.g., to post

comments or questions about the app) or vice-versa (e.g., for

the app‟s developers to post updates about the application).

Typically, an app‟s profile page thus accumulates posts over

time. We examine the number of such posts on the profile

pages of applications in our dataset. As discussed earlier in

Sec. 2.3, we were able to crawl the app profile pages for

3,227 malicious apps and 6,063 benign apps. From Fig. 9,

which shows the distribution of the number of posts found in

the profile pages for benign and malicious apps, we find that

97% of malicious apps do not have any posts in their profiles.

For the remaining 3%, we see that their profile pages include

posts that advertise URLs pointing to phishing scams or other

malicious apps. For example, one of the malicious apps has

150 posts in its profile page and all of those posts publish

URLs pointing to different phishing pages with URLs such

as http://2000forfree.blogspot.com and http://free-offers-

sites.blogspot.com/. Thus, the profile pages of malicious apps

DOI: 10.18535/ijecs/v6i4.35

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21000

either have no posts or are used to advertise malicious URLs,

to which any visitors of the page are exposed.

4.2 Aggregation-based features

Next, we analyze applications with respect to aggregation-

based features. Unlike the features we considered so far,

aggregationbased features for an app cannot be obtained on-

demand. Instead, we envision that aggregation-based features

are gathered by entities that monitor the posting behavior of

several applications across users and across time. Entities

that can do so include Facebook security applications

installed by a large population of users, such as

MyPageKeeper, or Facebook itself. Here, we consider two

aggregationbased features: similarity of app names, and the

URLs posted by an application over time. We compare these

features across malicious and benign apps.

4.2.1 App name

87% of malicious apps have an app name identical to that of

at least one other malicious app. An application‟s name is

configured by the app‟s developer at the time of the app‟s

creation on Facebook. Since the app ID is the unique

identifier for every application on Facebook, Facebook does

not impose any restrictions on app names. Therefore,

although Facebook does warn app developers not to violate

the trademark or other rights of third-parties during app

configuration, it is possible to create multiple apps with the

same app name.

We examine the similarity of names across applications. To

measure the similarity between two app names, we compute

the Damerau-Levenshtein edit distance between the two

names and normalize this distance. With the maximum of the

lengths of the two names. We then apply different thresholds

on the similarity scores to cluster apps in the D-Sample

dataset based on their name; we perform this clustering

separately among malicious and benign apps.

Figure 10: Clustering of apps based on similarity in names.

Figure 11: Size of app clusters with identical names.

Fig. 10 shows the ratio of the number of clusters to the

number of apps, for various thresholds of similarity; a

similarity threshold of 1 clusters applications that have

identical app names. We see that malicious apps tend to

cluster to a significantly larger extent than benign apps. For

example, even when only clustering apps with identical

names (similarity threshold = 1), the number of clusters for

malicious apps is less than one-fifth that of the number of

malicious apps, i.e., on average, 5 malicious apps have the

same name. Fig. 11 shows that close to 10% of clusters based

on identical names have over 10 malicious apps in each

cluster. For example, 627 different malicious apps have the

same name „The App‟.

On the contrary, even with a similarity threshold of 0.7, the

number of clusters for benign apps is only 20% lesser than

the number of apps. As a result, as seen in Fig. 11, most

benign apps have unique names.

Moreover, while most of the clustering of app names for

malicious apps occurs even with a similarity threshold of 1,

there is some reduction in the number of clusters with lower

thresholds.

This is due to hackers attempting to “typo-squat" on the

names of popular benign applications. For example, the

malicious application „FarmVile‟ attempts to take advantage

of the popular „FarmVille‟ app name, whereas the „Fortune

Cookie‟ malicious application exactly copies the popular

„Fortune Cookie‟ app name.

However, we find that a large majority of malicious apps in

our DSample dataset show very little similarity with the 100

most popular benign apps in our dataset. Our data therefore

seems to indicate that hackers creating several apps with the

same name to conduct a campaign is more common than

malicious apps typo-squatting on the names of popular apps.

4.2.2 External link to post ratio

Malicious apps often post links pointing to domains outside

Facebook, whereas benign apps rarely do so.

Figure 12: Distribution of external links to post ratio across apps.

Any post on Face book can optionally include an URL. Here,

we analyze the URLs included in posts made by malicious

and benign apps. For every app in our D-Sample dataset, we

aggregate the posts seen by MyPageKeeper over our nine

month data gathering period and the URLs seen across these

posts. We consider every URL pointing to a domain outside

of facebook.com as an external link. We then define a

„external link to post ratio‟ measure for every app as the ratio

of the number of external links posted by the app to the total

number of posts made by it. Fig. 12 shows that the external

link to post ratios for malicious apps are significantly higher

than those for benign apps. We see that 80% of benign apps

do not post any external links, whereas 40% of malicious

apps have one external link on average per post.

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21001

This shows that malicious apps often attempt to lead users to

web pages hosted outside Facebook, whereas the links posted

by benign apps are almost always restricted to URLs in the

facebook.com domain.

Note that malicious apps could post shortened URLs that

point back to Facebook, thus potentially making our external

link counts over-estimates. However, we find that malicious

apps rarely do so.

In our D-Sample dataset, we find 5700 bit.ly URLs (which

constitute 92% of all shortened URLs) were posted by

malicious apps. bit.ly‟s API allowed us to determine the full

URL corresponding to 5197 of these 5700 URLs, and only

386 of these URLs (< 10%) pointed back to Facebook.

5. DETECTING MALICIOUS APPS
Having analyzed the differentiating characteristics of

malicious and benign apps, we next use these features to

develop efficient classification techniques to identify

malicious Facebook applications.

We present two variants of our malicious app classifier—

FRAppE Lite and FRAppE. It is important to note that

MyPageKeeper, our source of “ground truth" data, cannot

detect malicious apps; it only detects malicious posts on

Facebook. Though malicious apps are the dominant source of

malicious posts, MyPage-

Keeper is agnostic about the source of the posts that it

classifies. In contrast, FRAppE Lite and FRAppE are

designed to detect malicious apps. Therefore, given an app

ID, MyPageKeeper cannot say whether it is malicious or not,

whereas FRAppE Lite and FRAppE can do so.

5.1 FRAppE Lite

FRAppE Lite is a lightweight version which makes use of

only the application features available on-demand. Given a

specific app ID, FRAppE Lite crawls the on-demand features

for that application and evaluates the application based on

these features in realtime. We envision that FRAppE Lite can

be incorporated, for example, into a browser extension that

can evaluate any Facebook application at the time when a

user is considering installing it to her profile.

Table 4 lists the features used as input to FRAppE Lite and

the source of each feature. All of these features can be

collected ondemand at the time of classification and do not

require prior knowledge about the app being evaluated. We

use the Support Vector Machine (SVM) classifier for

classifying malicious apps. SVM is widely used for binary

classification in security and other disciplines. The

effectiveness of SVM depends on the selection of kernel, the

kernel‟s parameters,and soft margin parameter C. We used

the default parameter values in libsvm [such as radial basis

function as kernel with degree 3, coef0 = 0 and C = 1 [. We

use the D-Complete dataset for training and testing the

classifier.

As shown earlier in Table 1,the D-Complete dataset consists

of 487 malicious apps and 2,255 benign apps. We use 5-fold

cross validation on the D-Complete dataset for training and

testing FRAppE Lite‟s classifier. In 5-fold cross validation,

the dataset is randomly divided into five segments, and we

test on each segment independently using the other four

segments for training. We use accuracy, false positive (FP)

rate, and false negative (FN) rate as the three metrics to

measure the classifier‟s performance. Accuracy is defined as

the ratio of correctly identified apps (i.e., a benign/malicious

app is appropriately identified as benign/malicious) to the

total number of apps. False positive (negative) rate is the

fraction of benign (malicious) apps incorrectly classified as

malicious (benign). We conduct four separate experiments

with the ratio of benign to malicious apps varied as 1:1, 4:1,

7:1, and 10:1. In each case, we sample apps at random from

the D-Complete dataset and run a 5-fold cross validation.

Table 5 shows that, irrespective of the ratio of benign to

malicious apps,

Table 4: List of features used in FRAppE lite

Table 5: Cross validation with FRAppE Lite.

the accuracy is above 98.5%. The higher the ratio of benign

to malicious apps, the classifier gets trained to minimize false

positives, rather than false negatives, in order to maximize

accuracy. However, we note that the false positive and

negative rates are below 0.6% and 5.5% in all cases. The

ratio of benign to malicious apps in our dataset is equal to

7:1; of the 111K apps seen in MyPageKeeper‟s data, 6,273

apps were identified as malicious based on MyPageKeeper‟s

classification of posts and an additional 8,051 apps are found

to be malicious, as we show later. Therefore, we can expect

FRAppE Lite to offer roughly 99.0% accuracy with 0.1%

false positives and 4.4% false negatives in practice.

To understand the contribution of each of FRAppE Lite‟s

features towards its accuracy, we next perform 5-fold cross

validation on the D-Complete dataset with only a single

feature at a time. Table 6 shows that each of the features by

themselves too result in reasonably high accuracy. The

„Description‟ feature yields the Feature Description App

name similarity Is app‟s name identical to a known malicious

app? External link to post ratio Fraction of app‟s posts that

contain links to domains outside Facebook highest accuracy

(97.8%) with low false positives (3.3%) and false negatives

(1.0%). On the flip side, classification based solely on any

one of the „Category‟, „Company‟, or „Permission count‟

features results in a large number of false positives, whereas

relying solely on client IDs yields a high false negative rate.

5.2 FRAppE

DOI: 10.18535/ijecs/v6i4.35

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21002

Next, we consider FRAppE—a malicious app detector that

utilizes our aggregation-based features in addition to the on-

demand features. Table 7 shows the two features that

FRAppE uses in addition to those used in FRAppE Lite.

Table 6: Classification accuracy with individual features.

Table 7: Additional features used in FRAppE.

Since the aggregation-based features for an app require a

cross-user and cross-app view over time, in contrast to

FRAppE Lite, we envision that FRAppE can be used by

Facebook or by third-party security applications that protect a

large population of users. Here, we again conduct a 5-fold

cross validation with the DComplete dataset for various

ratios of benign to malicious apps. In this case, we find that,

with a ratio of 7:1 in benign to malicious apps, FRAppE‟s

additional features improve the accuracy to 99.5%, as

compared to 99.0% with FRAppE Lite. Furthermore, the

false negative rate decreases from 4.4% to 4.1%, and we do

not have a single false positive.

5.3 Identifying new malicious apps

We next train FRAppE‟s classifier on the entire D-Sample

dataset (for which we have all the features and the ground

truth classification) and use this classifier to identify new

malicious apps. To do so, we apply FRAppE to all the apps

in our D-Total dataset that are not in the D-Sample dataset;

for these apps, we lack information as to whether they are

malicious or benign. Of the 98,609 apps that we test in this

experiment, 8,144 apps were flagged as malicious by

FRAppE.

Validation. Since we lack ground truth information for these

apps flagged as malicious, we apply a host of complementary

techniques to validate FRAppE‟s classification. We next

describe these validation techniques; as shown in Table 8, we

were able to validate 98.5% of the apps flagged by FRAppE.

Table 8: Validation of apps flagged by FRAppE.

Deleted from Facebook graph: Facebook itself monitors its

platform for malicious activities, and it disables and deletes

from the

Facebook graph malicious apps that it identifies. If the

Facebook API (https://graph.facebook.com/appID) returns

false for a particular app ID, this indicates that the app no

longer exists on Facebook; we consider this to be indicative

of blacklisting by Facebook. This technique validates 81% of

the malicious apps identified by FRAppE. Note that

Facebook‟s measures for detecting malicious apps are

however not sufficient; of the 1,464 malicious apps identified

by FRAppE (that were validated by other techniques below)

but are still active on Facebook, 35% have been active on

Facebook since over four months with 10% dating back to

over eight months.

 App name similarity: If an application‟s name exactly

matches that of multiple malicious apps in the D-Sample

dataset, that app too is likely to be part of the same campaign

and therefore malicious. On the other hand, we found several

malicious apps using version numbers in their name (e.g.,

„Profile Watchers v4.32‟,„How long have you spent logged

in? v8‟). Therefore, in addition,if an app name contains a

version number at the end and the rest of its name is identical

to multiple known malicious apps that similarly use version

numbers, this too is indicative of the app likely being

malicious.

Posted link similarity: If an URL posted by an app matches

the URL posted by a previously known malicious app, then

these apps are likely part of the same spam campaign, thus

validating the former as malicious. Typosquatting of popular

app: If an app‟s name is “typosquatting" that of a popular

app, we consider it malicious. For example, we found five

apps named „FarmVile‟, which are seeking to leverage the

popularity of „FarmVille‟.

Manual verification: Lastly, for the remaining 232 apps

unverified by the above techniques, we first cluster them

based on name similarity among themselves and verify one

app from each cluster with cluster size greater than 4. For

example, we find 83 apps named „Past Life‟. This enabled us

to validate an additional 147 apps marked as malicious by

FRAppE.

Validation of ground truth. Note that some of the

abovementioned techniques also enable us to validate the

heuristic we used to identify malicious apps in all of our

datasets: if any post made by an application was flagged as

malicious by MyPageKeeper, we marked the application as

malicious. As of October 2012, we find that, out of the 6273

malicious apps in our D-Sample dataset, 5440 apps have

been deleted from the Facebook graph.An additional 667

apps have an identical name to one of the 5440 deleted apps.

Therefore, we believe that the false positive rate in the data

that we use to train FRAppE Lite and FRAppE is at most

2:6%.

6. THE MALICIOUS APPS ECOSYSTEM
Equipped with an accurate classifier for detecting malicious

apps, we next analyze how malicious Facebook apps support

each other. Some of our analysis in Sec. 4 is already

indicative of the fact that

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21003

Figure 13: Relationship between collaborating applications

Figure 14: Local clustering coefficient of apps in the Collaboration

graph

malicious apps do not operate in isolation—many malicious

apps share the same name, several of them redirect to the

same domain upon installation, etc. Upon deeper

investigation, we identify a worrisome and, at the same time,

fascinating trend: malicious apps work collaboratively in

promoting each other. Namely, apps make posts that contain

links to the installation pages of other apps. We use the term

AppNets do describe these colluding groups; we claim that

they are for the social world what botnets are for the world of

physical devices.

6.1 The emergence of AppNets

We identify 6,331 malicious apps in our dataset that engage

in collaborative promotion. Among them, 25% are

promoters, 58.8% are promotees, and the remaining 16.2%

play both roles. Here, when app1 posts a link pointing to

app2, we refer to app1 as the promoter and app2 as the

promotee. Fig. 13 shows this relationship between malicious

apps. Intrigued, we study this group of applications further.

AppNets form large and densely connected groups. Let us

consider the graph that is created by having an edge between

any two apps that collude, i.e., an edge from app1 to app2 if

the former promotes the latter. We call this graph the

Collaboration graph. In this graph, we identify 44 connected

components among the 6,331 malicious apps. The top 5

connected components have large sizes: 3484, 770, 589, 296,

and 247.Upon further analysis of these components, we find:

 High connectivity: 70% of the apps collude with

more than 10 other apps. The maximum number of

collusions that an app is involved in is 417.

 High local density: 25% of the apps have a local

clustering coefficient 2 larger than 0.74 as shown in

Fig. 14.

Figure 15: Example of collusion graph between applications.

As an example, in Fig. 15, we show the local neighborhood

of the “Death Predictor” app, which has 26 neighbors and has

a local clustering coefficient of 0.87. Interestingly, 22 of the

node‟s neighbors share the same name.

App collusion happens in two different ways. The promoting

app can post a link that points directly to another app, or it

can post a link that points to a redirection URL, which points

dynamically to multiple different apps.

a. Posting direct links to other apps. We find 692 promoter

apps in our D-Sample dataset which promoted 1,806

different apps using direct links. This activity was intense:

15% of the promoters promoted at least 5 promotee apps. For

example, „The App‟ was promoting 24 other apps with

names „The App‟ or „La App‟.

b. Indirect app promotion. Alternatively, hackers use

websites outside Facebook to have more control and

protection in promoting apps. Specifically, a post made by a

malicious app includes a shortened URL and that URL, once

resolved, points to a website outside Facebook. This external

website forwards users to several different app installation

pages over time.

The use of the indirection mechanism is quite widespread, as

it provides a layer of protection to the apps involved. We

identify 103 indirection websites in our dataset of colluding

apps. To identify all the landing websites, for one and a half

months from mid-March to end of April 2012, we follow

each indirection website 100 times a day using an

instrumented Firefox browser.

Apps with the same name often are part of the same AppNet.

These 103 indirection website were used by 1,936 promoter

apps which had only 206 unique app names. The promotees

were 4,676 apps with 273 unique app names. Clearly, there is

a very high reuse of both names and these indirection

websites. For example, one indirection website distributed in

posts by the app „whats my name means‟ points to the

installation page of the apps „What ur name implies!!!‟,

„Name meaning finder‟, and „Name meaning‟.

Furthermore,35% of these websites promoted more than 100

different applications each. Following the discussion in Sec.

4.2.1, it appears that every hacker reuses the same names for

his applications. Since all apps underlying a campaign have

the same name, if any app in the pool gets black listed, others

can still survive and carry on the campaign without being

noticed by users.

Amazon hosts a third of these indirection websites. We

investigate the hosting infrastructure that enables these

redirection websites. First, we find that most of the links in

the posts were shortened URLs and 80% of them were using

the bit.ly shortening service. We consider all the bit.ly URLs

among our dataset of indirection links (84 out of 103) and

resolve them to the full URL. We find that one-third of these

URLs are hosted on amazonaws.com.

DOI: 10.18535/ijecs/v6i4.35

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21004

6.2 App piggybacking

From our dataset, we also discover that hackers have found

ways to make malicious posts appear as if they had been

posted by popular apps. To do so, they exploit weaknesses in

Facebook‟s API. We call this phenomenon app

piggybacking. One of the ways in which hackers achieve this

is by luring users to that are malicious. Share‟ a malicious

post to get promised gifts. When the victim tries to share the

malicious post, hackers invoke the Facebook API call

„http://www.facebook.com/connect/

prompt_feed.php?api_key=POP_APPID, which results in the

shared post being made on behalf of the popular app

POP_APPID. The vulnerability here is that anyone can

perform this API call, and Facebook does not authenticate

that the post is indeed being made by the

Figure 16: Distribution across apps of the fraction of an app’s posts that

are malicious

application whose ID is included in the request.We illustrate

the app piggybacking mechanism with a real example here:

[3].

We find instances of app piggybacking in our dataset as

follows. For every app that had at least one post marked as

malicious by MyPageKeeper, we compute the fraction of that

app‟s posts that were flagged by MyPageKeeper. We look for

apps where this ratio is low. In Fig. 16, we see that 5% of

apps have a malicious posts to all posts ratio of less than 0.2.

For these apps, we manually examine the malicious posts

flagged by MyPageKeeper. Table 9 shows the top five most

popular apps that we find among this set.

7. DISCUSSION
In this section, we discuss potential measures that hackers

can take to evade detection by FRAppE. We also present

recommendations

to Facebook about changes that they can make to their API to

reduce abuse by hackers. Robustness of features. Among the

various features that we use in our classification, some can

easily be obfuscated by malicious hackers to evade FRAppE

in the future. For example, we showed that, currently,

malicious apps often do not include a category, company, or

description in their app summary. However, hackers can

easily fill in this information into the summary of

applications that they create from here on. Similarly,

FRAppE leveraged the fact that profile pages of malicious

apps typically have no posts. Hackers can begin making

dummy posts in the profile pages of their applications to

obfuscate this feature and avoid detection. Therefore, some

of FRAppE‟s features may no longer prove to be useful in

the future while others

may require tweaking, e.g., FRAppE may need to analyze the

posts seen in an application‟s profile page to test their

validity. In any case, the fear of detection by FRAppE will

increase the onus on hackers while creating and maintaining

malicious applications. On the other hand, we argue that

several features used by FRAppE, such as the reputation of

redirect URIs, the number of required permissions, and the

use of different client IDs in app installation URLs, are

robust to the evolution of hackers. For example, to evade

detection, if malicious app developers were to increase the

number of permissions required, they risk losing potential

victims; the number of users that install an app has been

observed to be inversely proportional to the number of

permissions required by the app. Similarly, not using

different client IDs in app installation URLs would limit the

ability of hackers to instrument their applications to

propagate each other. We find that a version of FRAppE that

only uses such robust features still yields an accuracy of

98.2%, with false positive and false negative rates of 0.4%

and 3.2% on a 5-fold cross validation.

8. RELATED WORK
Detecting spam on OSNs. Gao et al. [32] analyzed posts on

the walls of 3.5 million Facebook users and showed that 0%

of links posted on Facebook walls are spam. They also

presented techniques to identify compromised accounts and

spam campaigns. In other work, Gao et al. [31] and Rahman

et al. develop efficient techniques for online spam filtering on

OSNs such as Facebook.

While Gao et al. [31] rely on having the whole social graph

as input, and so, is usable only by the OSN provider, Rahman

et al. develop a third-party application for spam detection on

Facebook. Others present mechanisms for detection of spam

URLs on Twitter. In contrast to all of these efforts, rather

than classifying individual URLs or posts as spam, we focus

on identifying malicious applications that are the main source

of spam on Facebook. Detecting spam accounts. Yang et al.

[46] and Benevenuto et al. developed techniques to identify

accounts of spammers on Twitter. Others have proposed a

honey-pot based approach to detect spam accounts on OSNs.

Yardi et al. analyzed behavioural patterns among spam

accounts in

Twitter. Instead of focusing on accounts created by

spammers, our work enables detection of malicious apps that

propagate spam and malware by luring normal users to install

them.
App permission exploitation. Chia et al.investigated he privacy

intrusiveness of Facebook apps and concluded that urrently

available signals such as community ratings, popularity, and

external ratings such as Web of Trust (WOT)

as well as signals from app developers are not reliable indicators of

the privacy risks associated with an app. Also, in keeping with our

observation, they found that popular Facebook apps tend to request

more permissions.

They also found that „Lookalike‟ applications that have names

similar to popular applications request more permissions than is

typical. Based on a measurement study across 200 Facebook users,

.

DOI: 10.18535/ijecs/v6i4.36

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21005

Liu et al. showed that privacy settings in Facebook rarely match

users‟ expectations.

To address the privacy risks associated with the use of Facebook

apps, some studies propose a new application policy and

authentication dialog. Makridakis et al. [40] use a real application

named „Photo of the Day‟ to demonstrate how malicious apps on

Facebook can launch DDoS attacks using the Facebook platform.

King et al. conducted a survey to understand users‟ interaction with

Facebook apps. Similarly, Gjoka et al. study the user reach of

popular Facebook applications. On the contrary, we quantify the

prevalence of malicious apps, and develop tools to identify

malicious apps that use several features beyond the required

permission set.
App rating efforts. Stein et al. [42] describe Facebook‟s

Immune System (FIS), a scalable real-time adversarial

learning system deployed in Facebook to protect users from

malicious activities. However, Stein et al. provide only a

high-level overview about threats to the Facebook graph and

do not provide any analysis of the system. Furthermore, in an

attempt to balance accuracy of detection with low false

positives, it appears that Facebook has recently softened their

controls for handling spam apps [11]. Other Facebook

applications [5,7,15] that defend users against spam and

malware do not provide ratings for apps on Facebook.

Whatapp [23] collects community reviews about apps for

security, privacy and openness.

However, it has not attracted much reviews (47 reviews

available) to date. To the best of our knowledge, we are the

first to provide a classification of Facebook apps into

malicious and benign categories.

9. CONCLUSIONS AND FUTURE WORK
Applications present a convenient means for hackers to

spread malicious content on Facebook. However, little is

understood about the characteristics of malicious apps and

how they operate. In this work, using a large corpus of

malicious Facebook apps observed over a nine month period,

we showed that malicious apps differ significantly from

benign apps with respect to several features. For example,

malicious apps are much more likely to share names with

other apps, and they typically request fewer permissions than

benign apps. Leveraging our observations, we developed

FRAppE, an accurate classifier for detecting malicious

Facebook applications.

Most interestingly, we highlighted the emergence of

AppNets— large groups of tightly connected applications

that promote each other. We will continue to dig deeper into

this ecosystem of malicious apps on Facebook, and we hope

that Facebook will benefit from our recommendations for

reducing the menace of hackers on their platform.

10. REFERENCES

[1] 100 social media statistics for 2012.

http://thesocialskinny.com/

100-social-media-statistics-for-2012/.

[2] 11 Million Bulk email addresses for sale - Sale Price $90.

http://www.allhomebased.com/

BulkEmailAddresses.htm.

[3] App piggybacking example.

https://apps.facebook.com/mypagekeeper/

?status=scam_report_fb_survey_scam_

Converse_shoes_2012_05_17_boQ.

[4] Application authentication flow using oauth 2.0.

http://developers.facebook.com/docs/

authentication/.

[5] Bitdefender Safego. http:

//www.facebook.com/bitdefender.safego.

[6] bit.ly API. http://code.google.com/p/

bitly-api/wiki/ApiDocumentation.

[7] Defensio Social Web Security. http://www.facebook.

com/apps/application.php?id=177000755670.

[8] Facebook developers.

https://developers.facebook.com/docs/

appsonfacebook/tutorial/.

[9] Facebook kills App Directory, wants users to search for apps.

http://zd.net/MkBY9k.

[10] Facebook Opengraph API. http://developers.

facebook.com/docs/reference/api/.

[11] Facebook softens its app spam controls, introduces better

tools for developers. http://bit.ly/LLmZpM.

[12] Facebook tops 900 million users.

http://money.cnn.com/2012/04/23/

technology/facebook-q1/index.htm.

[13] Hackers selling $25 toolkit to create malicious Facebook

apps. http://zd.net/g28HxI.

[14] MyPageKeeper. https://www.facebook.com/

apps/application.php?id=167087893342260.

[15] Norton Safe Web. http://www.facebook.com/

apps/application.php?id=310877173418.

[16] Permissions Reference.

https://developers.facebook.com/docs/

authentication/permissions/.

[17] Pr0file stalker: rogue Facebook application.

https://apps.facebook.com/mypagekeeper/

?status=scam_report_fb_survey_scam_

pr0file_viewer_2012_4_4.

[18] Selenium - Web Browser Automation.

http://seleniumhq.org/.

[19] SocialBakers: The receipe for social marketing success.

http://www.socialbakers.com/.

[20] Stay Away From Malicious Facebook Apps.

http://bit.ly/b6gWn5.

[21] The Pink Facebook - rogue application and survey scam.

http://nakedsecurity.sophos.com/2012/02/

27/pink-facebook-survey-scam/.

[22] Web-of-trust. http://www.mywot.com/.

[23] Whatapp (beta) - A Stanford Center for Internet and Society

website with support from the Rose Foundation.

https://whatapp.org/facebook/.

[24] Which cartoon character are you - rogue Facebook

application. https://apps.facebook.com/

mypagekeeper/?status=scam_report_fb_

survey_scam_whiich_cartoon_character_

are_you_2012_03_30.

[25] Wiki: Facebook Platform. http://en.wikipedia.

org/wiki/Facebook_Platform.

