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ABSTRACT 
With 20 million installs a day [1], third-party apps are a major reason for the popularity and addictiveness of Facebook. 

Unfortunately, hackers have realized the potential of using apps for spreading malware and spam. The problem is already 

significant, as we find that at least 13% of apps in our dataset are malicious. So far, the research community has focused on 

detecting malicious posts and campaigns. 

In this paper, we ask the question: given a Facebook application, can we determine if it is malicious? Our key contribution is in 

developing FRAppE—Facebook‟s Rigorous Application Evaluator— arguably the first tool focused on detecting malicious apps 

on Facebook. 

To develop FRAppE, we use information gathered by observing the posting behavior of 111K Facebook apps seen across 2.2 

million users on Facebook. First, we identify a set of features that help us distinguish malicious apps from benign ones. 

For example, we find that malicious apps often share names with other apps, and they typically request fewer permissions than 

benign apps. Second, leveraging these distinguishing features, we show that FRAppE can detect malicious apps with 99.5% 

accuracy, with no false positives and a low false negative rate (4.1%). Finally, we explore the ecosystem of malicious Facebook 

apps and identify mechanisms that these apps use to propagate. Interestingly, we find that many apps collude and support each 

other; in our dataset, we find 1,584 apps enabling the viral propagation of 3,723 other apps through their posts. Long-term, we see 

FRAppE as a step towards creating an independent watchdog for app assessment and ranking, so as to warn 

Facebook users before installing apps. 
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1. INTRODUCTION 

 

Online social networks (OSN) enable and encourage third 

party applications (apps) to enhance the user experience on 

these platforms. Such enhancements include interesting or 

entertaining ways of communicating among online friends, 

and diverse activities such as playing games or listening to 

songs. For example, Facebook provides developers an API 

[10] that facilitates app integration into the Facebook user-

experience. There are 500K apps available on Facebook and 

on average, 20M apps are installed every day [1]. 

Furthermore, many apps have acquired and maintain a large 

userbase. For instance, FarmVille and CityVille apps have 

26.5M and 42.8M users to date. 

Recently, hackers have started taking advantage of the 

popularity of this third-party apps platform and deploying 

malicious applications. Malicious apps can provide a 

lucrative business for hackers, given the popularity of OSNs, 

with Facebook leading the way with 900M active users [12]. 

There are many ways that hackers can benefit from a 

malicious app: (a) the app can reach large numbers of users 

and their friends to spread spam, (b) the app can obtain users‟ 

personal information such as email address, home town, and 

gender, and (c) the app can “re-produce" by making other 

malicious apps popular. To make matters worse, the 

deployment of malicious apps is simplified by ready-to-use 

toolkits starting at. In other words, there is motive and 

opportunity, and as a result, there are many malicious apps 

spreading on Facebook every day. 

Despite the above worrisome trends, today, a user has very 

limited information at the time of installing an app on 

Facebook. In other words, the problem is: given an app‟s 

identity number (the unique identifier assigned to the app by 

Facebook), can we detect if the app is malicious? Currently, 

there is no commercial service, publicly-available 

information, or research-based tool to advise a user about the 

risks of an app. As we show in Sec. 3, malicious apps are 

widespread and they easily spread, as an infected user 

jeopardizes the safety of all its friends. 

So far, the research community has paid little attention to 

OSN apps specifically. Most research related to spam and 

malware on 

Facebook has focused on detecting malicious posts and social 

spam campaigns .A recent work studies how app permissions 

and community ratings correlate to privacy risks of Facebook 

apps. Finally, there are some community-based 

feedbackdriven efforts to rank applications, such as Whatapp 

; though 
these could be very powerful in the future, so far they have 

received little adoption. We discuss previous work in more 

detail in Sec. 8. 
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In this work, we develop FRAppE, a suite of efficient 

classification techniques for identifying whether an app is 

malicious or not. 

 
Figure 1: The emergence of AppNets on Facebook. Real 

snapshot of 770 highly collaborating apps: an edge between two 

apps means that one app helped the other propagate. Average 

degree (no. of collaborations) is 195! 

 

To build FRAppE, we use data from MyPageKeeper, a 

security app in Facebook [14] that monitors the Facebook 

profiles of 2.2 million users. We analyze 111K apps that 

made 91 million posts over nine months. This is arguably the 

first comprehensive study focusing on malicious Facebook 

apps that focuses on quantifying, profiling, and 

understanding malicious apps, and synthesizes this 

information into an effective detection approach. 

Our work makes the following key contributions: 

 13% of the observed apps are malicious. We show 

that malicious apps are prevalent in Facebook and reach 

a large number of users. We find that 13% of apps in our 

dataset of 111K distinct apps are malicious. Also, 60% 

of malicious apps endanger more than 100K users each 

by convincing them to follow the links on the posts 

made by these apps, and 40% of malicious apps have 

over 1,000 monthly active users each.  

 Malicious and benign app profiles significantly differ. 

We systematically profile apps and show that malicious 

app profiles are significantly different than those of 

benign apps. A striking observation is the “laziness" of 

hackers; many malicious apps have the same name, as 

8% of unique names of malicious apps are each used by 

more than 10 different apps (as defined by their app 

IDs). Overall, we profile apps based on two classes of 

features: (a) those that can be obtained on-demand given 

an application‟s identifier (e.g., the permissions required 

by the app and the posts in the application‟s profile 

page), and (b) others that require a cross-user view to 

aggregate information across time and across apps (e.g., 

the posting behavior of the app and the similarity of its 

name to other apps). 

 The emergence of AppNets: apps collude at 

massive scale. We conduct a forensics 

investigation on the malicious app ecosystem to 

identify and quantify the techniques used to 

promote malicious apps. The most interesting result 

is that apps collude and collaborate at a massive 

scale. Apps promote other apps via posts that point 

to the “promoted" apps. If we describe the 

collusion relationship of promoting-promoted apps 

as a graph, we find 1,584 promoter apps that 

promote 3,723 other apps. Furthermore, these apps 

form large and highly-dense connected 

components, as shown in Fig. 1. Furthermore, 

hackers use fast-changing indirection: applications 

posts have URLs that point to a website, and the 

website dynamically redirects to many different 

apps; we find 103 such URLs that point to 4,676 

different malicious apps over the course of a 

month. These observed behaviors indicate well-

organized crime: one hacker controls many 

malicious apps, which we will call an AppNet, 

since they seem a parallel concept to botnets. 

 
 
Figure 2: Steps involved in hackers using malicious applications to get 

access tokens to post malicious content on victims’ walls. 

 

 
 Malicious hackers impersonate applications. We 

were surprised to find popular good apps, such as 

„FarmVille‟ and „Facebook for iPhone‟, posting 

malicious posts. On further investigation, we found 

a lax authentication rule in Facebook that enabled 

hackers to make malicious posts appear as though 

they came from these apps. 

 FRAppE can detect malicious apps with 99% 

accuracy. Wedevelop FRAppE (Facebook‟s 

Rigorous Application Evaluator) to identify 

malicious apps either using only features that can 

be obtained on-demand or using both on-demand 

and aggregationbased app information. FRAppE 

Lite, which only uses information available on-

demand, can identify malicious apps with 99.0% 

accuracy, with low false positives (0.1%) and false 

negatives (4.4%). By adding aggregation-based 

information, FRAppE can detect malicious apps 

with 99.5% accuracy, with no false positives and 

lower false negatives (4.1%). 

 

2. BACKGROUND 
In this section, we discuss how applications work on 

Facebook, provide an overview of MyPageKeeper (our 

primary data source), and outline the datasets that we use in 

this paper. 

 

2.1 Facebook Apps 

Facebook enables third-party developers to offer services to 

its users by means of Facebook applications. Unlike typical 

desktop and smartphone applications, installation of a 

Facebook application by a user does not involve the user 



DOI: 10.18535/ijecs/v6i4.35 

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 20996 

downloading and executing an application binary. Instead, 

when a user adds a Facebook application to her profile, the  

 
user grants the application server: (a) permission to access a 

subset of the information listed on the user‟s Facebook 

profile (e.g., the user‟s email address), and (b) permission to 

perform certain actions on behalf of the user (e.g., the ability 

to post on the user‟s wall). Facebook grants these 

permissions to any application by handing an OAuth 2.0 [4] 

token to the application server for each user who installs the 

application. Thereafter, the application can access the data 

and perform the explicitly-permitted actions on behalf of the 

user. Fig. 2 depicts the steps involved in the installation and 

operation of a Facebook application. 

Operation of malicious applications. Malicious Facebook 

applications typically operate as follows. 

 Step 1: Hackers convince users to install the app, usually 

with some fake promise (e.g., free iPads). 

 Step 2: Once a user installs the app, it redirects the user to a 

web page where the user is requested to perform tasks, such 

as completing a survey, again with the lure of fake rewards. 

 Step 3: The app thereafter accesses personal information 

(e.g., birth date) from the user‟s profile, which the hackers 

can potentially 

use to profit. 

 Step 4: The app makes malicious posts on behalf of the user 

to lure the user‟s friends to install the same app (or some 

other malicious app, as we will see later). 

This way the cycle continues with the app or colluding apps 

reaching more and more users. Personal information or 

surveys can be “sold" to third parties [2] to eventually profit 

the hackers. 

 

2.2 MyPageKeeper 

MyPageKeeper [14] is a Facebook app designed for detecting 

malicious posts on Facebook. Once a Facebook user installs 

MyPageKeeper, it periodically crawls posts from the user‟s 

wall and news feed. MyPageKeeper then applies URL 

blacklists as well as custom classification techniques to 

identify malicious posts. Our previous work [41] shows that 

MyPageKeeper detects malicious posts with high accuracy—

97% of posts flagged by it indeed point to malicious websites 

and it incorrectly flags only 0.005% of benign posts. 

The key thing to note here is that MyPageKeeper identifies 

social malware at the granularity of individual posts, without 

grouping together posts made by any given application. In 

other words, for every post that it crawls from the wall or 

news feed of a subscribed user, MyPageKeeper‟s 

determination of whether to flag that post does not take into 

account the application responsible for the post. Indeed, a 

large fraction of posts (37%) monitored by MyPage-Keeper 

are not posted by any application; many posts are made 

manually by a user or posted via a social plugin (e.g., by a 

user clicking „Like‟ or „Share‟ on an external website). Even 

among malicious posts identified by MyPageKeeper, 27% do 

not have an associated application. 

MyPageKeeper‟s classification primarily relies on a Support 

Vector Machine (SVM) based classifier that evaluates every 

URL by combining information obtained from all posts 

containing that URL. Examples of features used in 

MyPageKeeper‟s classifier include a) the presence of spam 

keywords such as „FREE‟, „Deal‟, and „Hurry‟ (malicious 

posts are more likely to include such keywords than normal 

posts), b) the similarity of text messages (posts in a spam 

campaign tend to have similar text messages across posts 

containing the same URL), and c) the number of „Like‟s and 

comments (malicious posts receive fewer „Like‟s and 

comments). Once a URL is identified as malicious, 

MyPageKeeper marks all posts containing the URL as 

malicious. 

 

2.3 Our Datasets 

In the absence of a central directory of Facebook apps 1, the 

basis of our study is a dataset obtained from 2.2M Facebook 

users, who are monitored by MyPageKeeper [14]. 

Our dataset contains 91 million posts from 2.2 million walls 

monitored by MyPageKeeper over nine months from June 

2011 to March 2012. These 91 million posts were made by 

111K apps, which forms our initial dataset D-Total, as shown 

in Table 1. Note that, out of the 144M posts monitored by 

MyPageKeeper during this period, here we consider only 

those posts that included a nonempty “application" field in 

the metadata that Facebook associates with every post. 

The D-Sample dataset: Finding malicious applications. To 

identify malicious Facebook applications in our dataset, we 

start with a simple heuristic: if any post made by an 

application was flagged as malicious by MyPageKeeper, we 

mark the application as malicious; as we explain later in 

Section 5, we find this to be an effective technique for 

identifying malicious apps. By applying this heuristic, we 

identified 6,350 malicious apps. Interestingly, we find that 

several popular applications such as „Facebook for Android‟ 

were also marked as malicious in this process. This is in fact 

the result of hackers exploiting Facebook weaknesses as we 

describe later in Section 6.2. To avoid such mis-

classifications, we verify applications using a whitelist that is 

created by considering the most popular apps and significant 

manual effort. After whitelisting, we are left with 6,273 

malicious applications (D-Sample dataset in Table 1). Table 

2 shows the top five malicious applications, in terms of 

number of posts per application. 

The D-Sample dataset: Including benign applications. To 

select an equal number of benign apps from the initial D-

Total dataset, we use two criteria: (a) none of their posts were 

identified as malicious by MyPageKeeper, and (b) they are 

“vetted" by Social Bakers [19], which monitors the "social 

marketing success" of apps. This process yields 5,750 

applications, 90% of which have a user rating of at least 3 out 
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of 5 on Social Bakers. To match the number of malicious 

apps, we add the top 523 applications in DTotal (in terms of 

number of posts) and obtain a set of 6,273 benign 

applications. The D-Sample dataset (Table 1) is the union of 

these 6,273 benign applications with the 6,273 malicious 

applications obtained earlier. The most popular benign apps 

are FarmVille, Facebook for iPhone, Mobile, Facebook for 

Android, and Zoo World. 

For profiling apps, we collect the information for apps that is 

readily available through Facebook. We use a crawler based 

on the Firefox browser instrumented with Selenium [18]. 

From March to May 2012, we crawl information for every 

application in our D Sample dataset once every week. We 

collected app summaries and their permissions, which 

requires two different crawls as discussed below. 

The D-Summary dataset: Apps with app summary. We 

collect app summaries through the Facebook Open graph 

API, which is made available by Facebook at a URL of the 

form https://graph.facebook.com/App_ID; Facebook has a 

unique identifier for each application. An app summary 

includes several pieces of information such as application 

name, description, company name, profile link, and monthly 

active users. If any application has been removed from 

Facebook, the query results in an error. We were able to 

gather the summary for 6,067 benign and 2,528 malicious 

apps (D-Summary dataset in Table 1). It is easy to 

understand why malicious apps were more often removed 

from Facebook. 

The D-Inst dataset: App permissions. We also want to 

study the permissions that apps request at the time of 

installation. For every application App_ID, we crawl 

https://www.facebook.com/apps/application.php?id=App_ID

, which usually redirects to the application‟s installation 

URL. We were able to get the permission set for 487 

malicious and 2,255 benign applications in our dataset. 

Automatically crawling the permissions for all apps is not 

trivial, as different apps have different redirection processes, 

which are intended for humans and not for crawlers. As 

expected, the queries for apps that are removed from 

Facebook fail here as well. 

The D-ProfileFeed: Posts on the app profile. Users can 

make posts on the profile page of an app, which we can call 

the profile feed of the app. We collect these posts using the 

Open graph API from Facebook. The API returns posts 

appearing on the application‟s page, with several attributes 

for each post, such as message, link, and create time. Of the 

apps in the D-Sample dataset, we were able to get the posts 

for 6,063 benign and 3,227 malicious apps. We construct the 

D-Complete dataset by taking the intersection of D-

Summary, D-Inst, and D-ProfileFeed datasets. Coverage: 

While the focus of our study is to highlight the differences 

between malicious and benign apps and to develop a sound 

methodology to detect malicious apps, we cannot aim to 

detect all malicious apps present on Facebook. This is 

because MyPage-Keeper has a limited view of Facebook 

data—the view provided by its subscribed users—and 

therefore it cannot see all the malicious apps present on 

Facebook. However, during the nine month period 

considered in our study, MyPageKeeper observed posts from 

111K apps, which constitutes a sizable fraction (over 20%) of 

the approximately 500K apps present on Facebook [25]. 

Moreover, since MyPageKeeper monitors posts from 2.4 

million walls on Facebook, any malicious app that affected a 

large fraction of Facebook users is likely to be present in our 

dataset. Therefore, we speculate that malicious apps missing 

from our dataset are likely to be those that affected only a 

small fraction of users. 

Data privacy: Our primary source of data in this work is our 

MyPageKeeper Facebook application, which has been 

approved by UCR‟s IRB process. In keeping with 

Facebook‟s policy and IRB requirements,data collected by 

MyPageKeeper is kept private, since it crawls posts from the 

walls and news feeds of users who have explicitly given it 

permission to do so at the time of MyPageKeeper 

installation. In addition, we also use data obtained via 

Facebook‟s open graph API, which is publicly accessible to 

anyone. 

 

 
Figure 3: Clicks received by bit.ly links posted by malicious apps. 

 
Figure 4: Median and maximum MAU achieved by malicious apps. 

3. PREVALENCE OF MALICIOUS APPS 
The driving motivation for detecting malicious apps stems 

from the suspicion that a significant fraction of malicious 

posts on Facebook are posted by apps. We find that 53% of 

malicious posts flagged by MyPageKeeper were posted by 

malicious apps. We further quantify the prevalence of 

malicious apps in two different ways. 

60% of malicious apps get at least a hundred thousand 

clicks on the URLs they post. We quantify the reach of 

malicious apps by determining the number of clicks on the 

the links included in malicious posts. For each malicious app 

in our D-Sample dataset, we identify all bit.ly URLs in posts 

made by that application. 

We focus on bit.ly URLs since bit.ly offers an API [6] for 

querying the number of clicks received by every bit.ly link; 

thus our estimate of the number of clicks received by every 

application is strictly a lower bound. On the other hand, each 

bit.ly link that we consider here could potentially also have 

received clicks from other sources on web (i.e., outside 

Facebook); thus, for every bit.ly URL, the total number of 

clicks it received is an upper bound on the number clicks 

received via Facebook. 

Across the posts made by the 6,273 malicious apps in the 

DSample dataset, we found that 3,805 of these apps had 

posted 5,700 bit.ly URLs in total. We queried bit.ly for the 
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click count of each URL. Fig. 3 shows the distribution across 

malicious apps of the total number of clicks received by 

bit.ly links that they had posted. We see that 60% of 

malicious apps were able to accumulate over 100K clicks 

each, with 20% receiving more than 1M clicks each. The 

application with the highest number of bit.ly clicks in this 

experiment—the „What is the sexiest thing about you?‟ 

app— received 1,742,359 clicks. 

40% of malicious apps have a median of at least 1000 

monthly active users. We examine the reach of malicious 

apps by inspecting the number of users that these 

applications had. To study this,we use the Monthly Active 

Users (MAU) metric provided by Facebook for every 

application. The number of Monthly Active Users is a 

measure of how many unique users are engaged with the 

application  
Figure 5: Comparison of apps whether they provide category, company 

name or description of the app. over the last 30 days in 

activities such as installing, posting, and liking the app. Fig. 4 

plots the distribution of Monthly Active Users of the 

malicious apps in our D-Summary dataset. For each app, the 

median and maximum MAU values over the three months 

are shown. We see that 40% of malicious applications had a 

median MAU of at least 1000 users, while 60% of malicious 

applications achieved at least 1000 during the three month 

observation period. The top malicious app here—„Future 

Teller‟—had a maximum MAU of 260,000 and median of 

20,000. 

 

4. PROFILING APPLICATIONS 
Given the significant impact that malicious apps have on 

Facebook, we next seek to develop a tool that can identify 

malicious applications. Towards developing an 

understanding of how to build such a tool, in this section, we 

compare malicious and benign apps with respect to various 

features. 

As discussed previously in Section 2.3, we crawled Facebook 

and obtained several features for every application in our 

dataset. 

We divide these features into two subsets: on-demand 

features and aggregation-based features. We find that 

malicious applications significantly differ from benign 

applications with respect to both classes of features. 

 

4.1 On-demand features 

The on-demand features associated with an application refer 

to the features that one can obtain on-demand given the 

application‟s ID. Such metrics include app name, description, 

category, company, and required permission set. 

 

4.1.1 Application summary 

Malicious apps typically have incomplete application 

summaries. First, we compare malicious and benign apps 

with respect to attributes present in the application‟s 

summary—app description, company name, and category. 

Description and company are free-text attributes, either of 

which can be at most 140 characters. 

On the other hand, category can be selected from a 

predefined (by Facebook) list such as „Games‟, „News‟, etc. 

that matches the app functionality best. Application 

developers can also specify the company name at the time of 

app creation. For example, the „Mafia Wars‟ app is 

configured with description as „Mafia Wars: Leave a legacy 

behind‟, company as „Zynga‟, and category as „Games‟. Fig. 

5 shows the fraction of malicious and benign apps in the 

DSummary dataset for which these three fields are non-

empty. We see that, while most benign apps specify such 

information, very rarely malicious apps do so. For example, 

only 1.4% of malicious apps have a non-empty description, 

whereas 93% of benign apps configure their summary with a 

description. We find that the benign 

 
Figure 6: Top 5 permissions required by benign and malicious apps. 

 

 
Figure 7: Number of permissions requested by every app.apps that do 

not configure the description parameter are typically less popular (as 

seen from their monthly active users). 

 

4.1.2 Required permission set 

97% of malicious apps require only one permission from 

users. Every Facebook application requires authorization by a 

user before the user can use the app. At the time of 

installation, every app requests the user to grant it a set of 

permissions that it requires. These permissions are chosen 

from a pool of 64 permissions pre-defined by Facebook [16]. 

Example permissions include access to information in the 

user‟s profile such as gender, email, birthday, and friend list, 

and permission to post on the user‟s wall. 

We see how malicious and benign apps compare based on the 

permission set that they require from users. Fig. 6 shows the 

top five permissions required by both benign and malicious 

apps. Most malicious apps in our D-Inst dataset require only 

the „publish stream‟ permission (ability to post on the user‟s 

wall). This permission is sufficient for making spam posts on 

behalf of users. In addition, Fig. 7 shows that 97% of 

malicious apps require only one permission, whereas the 
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same fraction for benign apps is 62%. We believe that this is 

because users tend not to install apps that require larger set of 

permissions; Facebook suggests that application developers 

do not ask for more permissions than necessary since there is 

a strong correlation between the number of permissions 

required by an app and the number of users who install it [8]. 

Therefore, to maximize the number of victims, malicious 

apps seem to follow this hypothesis and require a small set of 

permissions. 

 

4.1.3 Redirect URI 

Malicious apps redirect users to domains with poor 

reputation. In an application‟s installation URL, the „redirect 

URI‟ parameter refers to the URL where the user is 

redirected to once she installs the app. We extracted the 

redirect URI parameter from the installation URL for apps in 

the D-Inst dataset and queried the trust reputation scores for 

these URIs from WOT [22]. Fig. 8 shows the corresponding 

score for both benign and malicious apps. WOT assigns a 

score between 0 and 100 for every URI, and we assign a 

 
Figure 8: WOT trust score of the domain that apps redirect to upon 

installation. 

 
Table 3: Top five domains hosting malicious apps in D-Inst dataset.  

score of �1 to the domains for which the WOT score is not 

available. 

We see that 80% of malicious apps point to domains for 

which WOT does not have any reputation score, and in 

addition, 95% of malicious apps have a score less than 5. In 

contrast, we find that 80% of benign apps have redirect URIs 

pointing to the apps.facebook.com domain and therefore 

have higher WOT scores. We speculate that malicious apps 

redirect users to web pages hosted outside of Facebook so 

that the same spam/malicious content, e.g., survey scams, can 

also be propagated by other means such as email and Twitter 

spam. 

Furthermore, we found several instances where a single 

domain hosts the URLs to which multiple malicious apps 

redirect upon installation. 

For example, thenamemeans2.com hosts the redirect URI for 

138 different malicious apps in our D-Inst dataset. Table 3 

shows the top five such domains; these five domains host the 

content for 83% of the 491 malicious apps in the D-Inst 

dataset. 

 

4.1.4 Client ID in app installation URL 

78% of malicious apps trick users into installing other apps 

by using a different client ID in their app installation URL. 

For a Facebook application with ID A, the application 

installation URL is 

https://www.facebook.com/apps/application.php?id=A. 

When any user visits this URL, Facebook queries the 

application server registered for app A to fetch several 

parameters, such as the set of permissions required by the 

app. Facebook then redirects the user to a URL which 

encodes these parameters in the URL. One of the parameters 

in this URL is the „client ID‟ parameter. If the user accepts to 

install the application, the ID of the application which she 

will end up installing is the value of the client ID parameter. 

Ideally, as described in the Facebook app developer tutorial 

[8], this client ID should be identical to the app ID A, whose 

installation URL the user originally visited. However, in our 

D-Inst dataset, we find that 78% of malicious apps use a 

client ID that differs from the ID of the original app, whereas 

only 1% of benign apps do so. A possible reason for this is to 

increase the survivability of apps. As we show later in Sec. 6, 

hackers create large sets of malicious apps with similar 

names, and when a user visits the installation URL for one of 

these apps, the user is randomly redirected to install any one 

of these apps. This ensures that, even if one app from the set 

gets blacklisted, others can still survive and propagate on 

Facebook. 

 
Figure 9: Number of posts in app profile page. 

 

4.1.5 Posts in app profile 

97% of malicious apps do not have posts in their profiles. An 

application‟s profile page presents a forum for users to 

communicate with the app‟s developers (e.g., to post 

comments or questions about the app) or vice-versa (e.g., for 

the app‟s developers to post updates about the application). 

Typically, an app‟s profile page thus accumulates posts over 

time. We examine the number of such posts on the profile 

pages of applications in our dataset. As discussed earlier in 

Sec. 2.3, we were able to crawl the app profile pages for 

3,227 malicious apps and 6,063 benign apps. From Fig. 9, 

which shows the distribution of the number of posts found in 

the profile pages for benign and malicious apps, we find that 

97% of malicious apps do not have any posts in their profiles. 

For the remaining 3%, we see that their profile pages include 

posts that advertise URLs pointing to phishing scams or other 

malicious apps. For example, one of the malicious apps has 

150 posts in its profile page and all of those posts publish 

URLs pointing to different phishing pages with URLs such 

as http://2000forfree.blogspot.com and http://free-offers-

sites.blogspot.com/. Thus, the profile pages of malicious apps 
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either have no posts or are used to advertise malicious URLs, 

to which any visitors of the page are exposed. 

 

4.2 Aggregation-based features 

Next, we analyze applications with respect to aggregation-

based features. Unlike the features we considered so far, 

aggregationbased features for an app cannot be obtained on-

demand. Instead, we envision that aggregation-based features 

are gathered by entities that monitor the posting behavior of 

several applications across users and across time. Entities 

that can do so include Facebook security applications 

installed by a large population of users, such as 

MyPageKeeper, or Facebook itself. Here, we consider two 

aggregationbased features: similarity of app names, and the 

URLs posted by an application over time. We compare these 

features across malicious and benign apps. 

 

4.2.1 App name 

87% of malicious apps have an app name identical to that of 

at least one other malicious app. An application‟s name is 

configured by the app‟s developer at the time of the app‟s 

creation on Facebook. Since the app ID is the unique 

identifier for every application on Facebook, Facebook does 

not impose any restrictions on app names. Therefore, 

although Facebook does warn app developers not to violate 

the trademark or other rights of third-parties during app 

configuration, it is possible to create multiple apps with the 

same app name. 

We examine the similarity of names across applications. To 

measure the similarity between two app names, we compute 

the Damerau-Levenshtein edit distance between the two 

names and normalize this distance. With the maximum of the 

lengths of the two names. We then apply different thresholds 

on the similarity scores to cluster apps in the D-Sample 

dataset based on their name; we perform this clustering 

separately among malicious and benign apps. 

 
Figure 10: Clustering of apps based on similarity in names. 

 

 

Figure 11: Size of app clusters with identical names. 

Fig. 10 shows the ratio of the number of clusters to the 

number of apps, for various thresholds of similarity; a 

similarity threshold of 1 clusters applications that have 

identical app names. We see that malicious apps tend to 

cluster to a significantly larger extent than benign apps. For 

example, even when only clustering apps with identical 

names (similarity threshold = 1), the number of clusters for 

malicious apps is less than one-fifth that of the number of 

malicious apps, i.e., on average, 5 malicious apps have the 

same name. Fig. 11 shows that close to 10% of clusters based 

on identical names have over 10 malicious apps in each 

cluster. For example, 627 different malicious apps have the 

same name „The App‟. 

On the contrary, even with a similarity threshold of 0.7, the 

number of clusters for benign apps is only 20% lesser than 

the number of apps. As a result, as seen in Fig. 11, most 

benign apps have unique names. 

Moreover, while most of the clustering of app names for 

malicious apps occurs even with a similarity threshold of 1, 

there is some reduction in the number of clusters with lower 

thresholds. 

This is due to hackers attempting to “typo-squat" on the 

names of popular benign applications. For example, the 

malicious application „FarmVile‟ attempts to take advantage 

of the popular „FarmVille‟ app name, whereas the „Fortune 

Cookie‟ malicious application exactly copies the popular 

„Fortune Cookie‟ app name. 

However, we find that a large majority of malicious apps in 

our DSample dataset show very little similarity with the 100 

most popular benign apps in our dataset. Our data therefore 

seems to indicate that hackers creating several apps with the 

same name to conduct a campaign is more common than 

malicious apps typo-squatting on the names of popular apps. 

 

4.2.2 External link to post ratio 

Malicious apps often post links pointing to domains outside 

Facebook, whereas benign apps rarely do so.  

 
Figure 12: Distribution of external links to post ratio across apps. 

Any post on Face book can optionally include an URL. Here, 

we analyze the URLs included in posts made by malicious 

and benign apps. For every app in our D-Sample dataset, we 

aggregate the posts seen by MyPageKeeper over our nine 

month data gathering period and the URLs seen across these 

posts. We consider every URL pointing to a domain outside 

of facebook.com as an external link. We then define a 

„external link to post ratio‟ measure for every app as the ratio 

of the number of external links posted by the app to the total 

number of posts made by it. Fig. 12 shows that the external 

link to post ratios for malicious apps are significantly higher 

than those for benign apps. We see that 80% of benign apps 

do not post any external links, whereas 40% of malicious 

apps have one external link on average per post. 
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This shows that malicious apps often attempt to lead users to 

web pages hosted outside Facebook, whereas the links posted 

by benign apps are almost always restricted to URLs in the 

facebook.com domain. 

Note that malicious apps could post shortened URLs that 

point back to Facebook, thus potentially making our external 

link counts over-estimates. However, we find that malicious 

apps rarely do so. 

In our D-Sample dataset, we find 5700 bit.ly URLs (which 

constitute 92% of all shortened URLs) were posted by 

malicious apps. bit.ly‟s API allowed us to determine the full 

URL corresponding to 5197 of these 5700 URLs, and only 

386 of these URLs (< 10%) pointed back to Facebook. 

 

5. DETECTING MALICIOUS APPS 
Having analyzed the differentiating characteristics of 

malicious and benign apps, we next use these features to 

develop efficient classification techniques to identify 

malicious Facebook applications. 

We present two variants of our malicious app classifier—

FRAppE Lite and FRAppE. It is important to note that 

MyPageKeeper, our source of “ground truth" data, cannot 

detect malicious apps; it only detects malicious posts on 

Facebook. Though malicious apps are the dominant source of 

malicious posts, MyPage- 

Keeper is agnostic about the source of the posts that it 

classifies. In contrast, FRAppE Lite and FRAppE are 

designed to detect malicious apps. Therefore, given an app 

ID, MyPageKeeper cannot say whether it is malicious or not, 

whereas FRAppE Lite and FRAppE can do so. 

 

5.1 FRAppE Lite 

FRAppE Lite is a lightweight version which makes use of 

only the application features available on-demand. Given a 

specific app ID, FRAppE Lite crawls the on-demand features 

for that application and evaluates the application based on 

these features in realtime. We envision that FRAppE Lite can 

be incorporated, for example, into a browser extension that 

can evaluate any Facebook application at the time when a 

user is considering installing it to her profile. 

Table 4 lists the features used as input to FRAppE Lite and 

the source of each feature. All of these features can be 

collected ondemand at the time of classification and do not 

require prior knowledge about the app being evaluated. We 

use the Support Vector Machine (SVM) classifier for 

classifying malicious apps. SVM is widely used for binary 

classification in security and other disciplines. The 

effectiveness of SVM depends on the selection of kernel, the 

kernel‟s parameters,and soft margin parameter C. We used 

the default parameter values in libsvm [ such as radial basis 

function as kernel with degree 3, coef0 = 0 and C = 1 [. We 

use the D-Complete dataset for training and testing the 

classifier. 

As shown earlier in Table 1,the D-Complete dataset consists 

of 487 malicious apps and 2,255 benign apps. We use 5-fold 

cross validation on the D-Complete dataset for training and 

testing FRAppE Lite‟s classifier. In 5-fold cross validation, 

the dataset is randomly divided into five segments, and we 

test on each segment independently using the other four 

segments for training. We use accuracy, false positive (FP) 

rate, and false negative (FN) rate as the three metrics to 

measure the classifier‟s performance. Accuracy is defined as 

the ratio of correctly identified apps (i.e., a benign/malicious 

app is appropriately identified as benign/malicious) to the 

total number of apps. False positive (negative) rate is the 

fraction of benign (malicious) apps incorrectly classified as 

malicious (benign). We conduct four separate experiments 

with the ratio of benign to malicious apps varied as 1:1, 4:1, 

7:1, and 10:1. In each case, we sample apps at random from 

the D-Complete dataset and run a 5-fold cross validation. 

Table 5 shows that, irrespective of the ratio of benign to 

malicious apps, 

 

 

 
 

 

Table 4: List of features used in FRAppE lite 

 

 

 

Table 5: Cross validation with FRAppE Lite. 

 

the accuracy is above 98.5%. The higher the ratio of benign 

to malicious apps, the classifier gets trained to minimize false 

positives, rather than false negatives, in order to maximize 

accuracy. However, we note that the false positive and 

negative rates are below 0.6% and 5.5% in all cases. The 

ratio of benign to malicious apps in our dataset is equal to 

7:1; of the 111K apps seen in MyPageKeeper‟s data, 6,273 

apps were identified as malicious based on MyPageKeeper‟s 

classification of posts and an additional 8,051 apps are found 

to be malicious, as we show later. Therefore, we can expect 

FRAppE Lite to offer roughly 99.0% accuracy with 0.1% 

false positives and 4.4% false negatives in practice. 

To understand the contribution of each of FRAppE Lite‟s 

features towards its accuracy, we next perform 5-fold cross 

validation on the D-Complete dataset with only a single 

feature at a time. Table 6 shows that each of the features by 

themselves too result in reasonably high accuracy. The 

„Description‟ feature yields the Feature Description App 

name similarity Is app‟s name identical to a known malicious 

app? External link to post ratio Fraction of app‟s posts that 

contain links to domains outside Facebook highest accuracy 

(97.8%) with low false positives (3.3%) and false negatives 

(1.0%). On the flip side, classification based solely on any 

one of the „Category‟, „Company‟, or „Permission count‟ 

features results in a large number of false positives, whereas 

relying solely on client IDs yields a high false negative rate. 

 

5.2 FRAppE 
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Next, we consider FRAppE—a malicious app detector that 

utilizes our aggregation-based features in addition to the on-

demand features. Table 7 shows the two features that 

FRAppE uses in addition to those used in FRAppE Lite. 

 

 
Table 6: Classification accuracy with individual features. 

 

 
Table 7: Additional features used in FRAppE. 

 

Since the aggregation-based features for an app require a 

cross-user and cross-app view over time, in contrast to 

FRAppE Lite, we envision that FRAppE can be used by 

Facebook or by third-party security applications that protect a 

large population of users. Here, we again conduct a 5-fold 

cross validation with the DComplete dataset for various 

ratios of benign to malicious apps. In this case, we find that, 

with a ratio of 7:1 in benign to malicious apps, FRAppE‟s 

additional features improve the accuracy to 99.5%, as 

compared to 99.0% with FRAppE Lite. Furthermore, the 

false negative rate decreases from 4.4% to 4.1%, and we do 

not have a single false positive. 

 

5.3 Identifying new malicious apps 

We next train FRAppE‟s classifier on the entire D-Sample 

dataset (for which we have all the features and the ground 

truth classification) and use this classifier to identify new 

malicious apps. To do so, we apply FRAppE to all the apps 

in our D-Total dataset that are not in the D-Sample dataset; 

for these apps, we lack information as to whether they are 

malicious or benign. Of the 98,609 apps that we test in this 

experiment, 8,144 apps were flagged as malicious by 

FRAppE.  

Validation. Since we lack ground truth information for these 

apps flagged as malicious, we apply a host of complementary 

techniques to validate FRAppE‟s classification. We next 

describe these validation techniques; as shown in Table 8, we 

were able to validate 98.5% of the apps flagged by FRAppE.  

 

 
Table 8: Validation of apps flagged by FRAppE. 

 

Deleted from Facebook graph: Facebook itself monitors its 

platform for malicious activities, and it disables and deletes 

from the 

Facebook graph malicious apps that it identifies. If the 

Facebook API (https://graph.facebook.com/appID) returns 

false for a particular app ID, this indicates that the app no 

longer exists on Facebook; we consider this to be indicative 

of blacklisting by Facebook. This technique validates 81% of 

the malicious apps identified by FRAppE. Note that 

Facebook‟s measures for detecting malicious apps are 

however not sufficient; of the 1,464 malicious apps identified 

by FRAppE (that were validated by other techniques below) 

but are still active on Facebook, 35% have been active on 

Facebook since over four months with 10% dating back to 

over eight months. 

 App name similarity: If an application‟s name exactly 

matches that of multiple malicious apps in the D-Sample 

dataset, that app too is likely to be part of the same campaign 

and therefore malicious. On the other hand, we found several 

malicious apps using version numbers in their name (e.g., 

„Profile Watchers v4.32‟,„How long have you spent logged 

in? v8‟). Therefore, in addition,if an app name contains a 

version number at the end and the rest of its name is identical 

to multiple known malicious apps that similarly use version 

numbers, this too is indicative of the app likely being 

malicious. 

Posted link similarity: If an URL posted by an app matches 

the URL posted by a previously known malicious app, then 

these apps are likely part of the same spam campaign, thus 

validating the former as malicious. Typosquatting of popular 

app: If an app‟s name is “typosquatting" that of a popular 

app, we consider it malicious. For example, we found five 

apps named „FarmVile‟, which are seeking to leverage the 

popularity of „FarmVille‟. 

Manual verification: Lastly, for the remaining 232 apps 

unverified by the above techniques, we first cluster them 

based on name similarity among themselves and verify one 

app from each cluster with cluster size greater than 4. For 

example, we find 83 apps named „Past Life‟. This enabled us 

to validate an additional 147 apps marked as malicious by 

FRAppE. 

Validation of ground truth. Note that some of the 

abovementioned techniques also enable us to validate the 

heuristic we used to identify malicious apps in all of our 

datasets: if any post made by an application was flagged as 

malicious by MyPageKeeper, we marked the application as 

malicious. As of October 2012, we find that, out of the 6273 

malicious apps in our D-Sample dataset, 5440 apps have 

been deleted from the Facebook graph.An additional 667 

apps have an identical name to one of the 5440 deleted apps. 

Therefore, we believe that the false positive rate in the data 

that we use to train FRAppE Lite and FRAppE is at most 

2:6%. 

 

6. THE MALICIOUS APPS ECOSYSTEM 
Equipped with an accurate classifier for detecting malicious 

apps, we next analyze how malicious Facebook apps support 

each other. Some of our analysis in Sec. 4 is already 

indicative of the fact that  



DOI: 10.18535/ijecs/v6i4.36 

Nayana K N, IJECS Volume 6 Issue 4 April, 2017 Page No. 20994-21005 Page 21003 

 
Figure 13: Relationship between collaborating applications 

 

 
Figure 14: Local clustering coefficient of apps in the Collaboration 

graph 

 

malicious apps do not operate in isolation—many malicious 

apps share the same name, several of them redirect to the 

same domain upon installation, etc. Upon deeper 

investigation, we identify a worrisome and, at the same time, 

fascinating trend: malicious apps work collaboratively in 

promoting each other. Namely, apps make posts that contain 

links to the installation pages of other apps. We use the term 

AppNets do describe these colluding groups; we claim that 

they are for the social world what botnets are for the world of 

physical devices. 

 

6.1 The emergence of AppNets 

We identify 6,331 malicious apps in our dataset that engage 

in collaborative promotion. Among them, 25% are 

promoters, 58.8% are promotees, and the remaining 16.2% 

play both roles. Here, when app1 posts a link pointing to 

app2, we refer to app1 as the promoter and app2 as the 

promotee. Fig. 13 shows this relationship between malicious 

apps. Intrigued, we study this group of applications further. 

AppNets form large and densely connected groups. Let us 

consider the graph that is created by having an edge between 

any two apps that collude, i.e., an edge from app1 to app2 if 

the former promotes the latter. We call this graph the 

Collaboration graph. In this graph, we identify 44 connected 

components among the 6,331 malicious apps. The top 5 

connected components have large sizes: 3484, 770, 589, 296, 

and 247.Upon further analysis of these components, we find: 

 High connectivity: 70% of the apps collude with 

more than 10 other apps. The maximum number of 

collusions that an app is involved in is 417. 

 High local density: 25% of the apps have a local 

clustering coefficient 2 larger than 0.74 as shown in 

Fig. 14. 

 
Figure 15: Example of collusion graph between applications. 

As an example, in Fig. 15, we show the local neighborhood 

of the “Death Predictor” app, which has 26 neighbors and has 

a local clustering coefficient of 0.87. Interestingly, 22 of the 

node‟s neighbors share the same name. 

App collusion happens in two different ways. The promoting 

app can post a link that points directly to another app, or it 

can post a link that points to a redirection URL, which points 

dynamically to multiple different apps. 

a. Posting direct links to other apps. We find 692 promoter 

apps in our D-Sample dataset which promoted 1,806 

different apps using direct links. This activity was intense: 

15% of the promoters promoted at least 5 promotee apps. For 

example, „The App‟ was promoting 24 other apps with 

names „The App‟ or „La App‟. 

b. Indirect app promotion. Alternatively, hackers use 

websites outside Facebook to have more control and 

protection in promoting apps. Specifically, a post made by a 

malicious app includes a shortened URL and that URL, once 

resolved, points to a website outside Facebook. This external 

website forwards users to several different app installation 

pages over time. 

The use of the indirection mechanism is quite widespread, as 

it provides a layer of protection to the apps involved. We 

identify 103 indirection websites in our dataset of colluding 

apps. To identify all the landing websites, for one and a half 

months from mid-March to end of April 2012, we follow 

each indirection website 100 times a day using an 

instrumented Firefox browser. 

Apps with the same name often are part of the same AppNet. 

These 103 indirection website were used by 1,936 promoter 

apps which had only 206 unique app names. The promotees 

were 4,676 apps with 273 unique app names. Clearly, there is 

a very high reuse of both names and these indirection 

websites. For example, one indirection website distributed in 

posts by the app „whats my name means‟ points to the 

installation page of the apps „What ur name implies!!!‟, 

„Name meaning finder‟, and „Name meaning‟. 

Furthermore,35% of these websites promoted more than 100 

different applications each. Following the discussion in Sec. 

4.2.1, it appears that every hacker reuses the same names for 

his applications. Since all apps underlying a campaign have 

the same name, if any app in the pool gets black listed, others 

can still survive and carry on the campaign without being 

noticed by users. 

Amazon hosts a third of these indirection websites. We 

investigate the hosting infrastructure that enables these 

redirection websites. First, we find that most of the links in 

the posts were shortened URLs and 80% of them were using 

the bit.ly shortening service. We consider all the bit.ly URLs 

among our dataset of indirection links (84 out of 103) and 

resolve them to the full URL. We find that one-third of these 

URLs are hosted on amazonaws.com. 
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6.2 App piggybacking 

From our dataset, we also discover that hackers have found 

ways to make malicious posts appear as if they had been 

posted by popular apps. To do so, they exploit weaknesses in 

Facebook‟s API. We call this phenomenon app 

piggybacking. One of the ways in which hackers achieve this 

is by luring users to that are malicious. Share‟ a malicious 

post to get promised gifts. When the victim tries to share the 

malicious post, hackers invoke the Facebook API call 

„http://www.facebook.com/connect/ 

prompt_feed.php?api_key=POP_APPID, which results in the 

shared post being made on behalf of the popular app 

POP_APPID. The vulnerability here is that anyone can 

perform this API call, and Facebook does not authenticate 

that the post is indeed being made by the   

 

 

 

 

 

 

 

 
Figure 16: Distribution across apps of the fraction of an app’s posts that 

are malicious   
 

application whose ID is included in the request.We illustrate 

the app piggybacking mechanism with a real example here: 

[3]. 

We find instances of app piggybacking in our dataset as 

follows. For every app that had at least one post marked as 

malicious by MyPageKeeper, we compute the fraction of that 

app‟s posts that were flagged by MyPageKeeper. We look for 

apps where this ratio is low. In Fig. 16, we see that 5% of 

apps have a malicious posts to all posts ratio of less than 0.2. 

For these apps, we manually examine the malicious posts 

flagged by MyPageKeeper. Table 9 shows the top five most 

popular apps that we find among this set. 

 

7. DISCUSSION 
In this section, we discuss potential measures that hackers 

can take to evade detection by FRAppE. We also present 

recommendations 

to Facebook about changes that they can make to their API to 

reduce abuse by hackers. Robustness of features. Among the 

various features that we use in our classification, some can 

easily be obfuscated by malicious hackers to evade FRAppE 

in the future. For example, we showed that, currently, 

malicious apps often do not include a category, company, or 

description in their app summary. However, hackers can 

easily fill in this information into the summary of 

applications that they create from here on. Similarly, 

FRAppE leveraged the fact that profile pages of malicious 

apps typically have no posts. Hackers can begin making 

dummy posts in the profile pages of their applications to 

obfuscate this feature and avoid detection. Therefore, some 

of FRAppE‟s features may no longer prove to be useful in 

the future while others  

may require tweaking, e.g., FRAppE may need to analyze the 

posts seen in an application‟s profile page to test their 

validity. In any case, the fear of detection by FRAppE will 

increase the onus on hackers while creating and maintaining 

malicious applications. On the other hand, we argue that 

several features used by FRAppE, such as the reputation of 

redirect URIs, the number of required permissions, and the 

use of different client IDs in app installation URLs, are 

robust to the evolution of hackers. For example, to evade 

detection, if malicious app developers were to increase the 

number of permissions required, they risk losing potential 

victims; the number of users that install an app has been 

observed to be inversely proportional to the number of 

permissions required by the app. Similarly, not using 

different client IDs in app installation URLs would limit the 

ability of hackers to instrument their applications to 

propagate each other. We find that a version of FRAppE that 

only uses such robust features still yields an accuracy of 

98.2%, with false positive and false negative rates of 0.4% 

and 3.2% on a 5-fold cross validation. 

 

8. RELATED WORK 
Detecting spam on OSNs. Gao et al. [32] analyzed posts on 

the walls of 3.5 million Facebook users and showed that 0% 

of links posted on Facebook walls are spam. They also 

presented techniques to identify compromised accounts and 

spam campaigns. In other work, Gao et al. [31] and Rahman 

et al. develop efficient techniques for online spam filtering on 

OSNs such as Facebook. 

While Gao et al. [31] rely on having the whole social graph 

as input, and so, is usable only by the OSN provider, Rahman 

et al. develop a third-party application for spam detection on 

Facebook. Others present mechanisms for detection of spam 

URLs on Twitter. In contrast to all of these efforts, rather 

than classifying individual URLs or posts as spam, we focus 

on identifying malicious applications that are the main source 

of spam on Facebook. Detecting spam accounts. Yang et al. 

[46] and Benevenuto et al. developed techniques to identify 

accounts of spammers on Twitter. Others have proposed a 

honey-pot based approach to detect spam accounts on OSNs. 

Yardi et al. analyzed behavioural patterns among spam 

accounts in  

Twitter. Instead of focusing on accounts created by 

spammers, our work enables detection of malicious apps that 

propagate spam and malware by luring normal users to install 

them. 
App permission exploitation. Chia et al.investigated he privacy 

intrusiveness of Facebook apps and concluded that  urrently 

available signals such as community ratings, popularity, and 

external ratings such as Web of Trust (WOT)  

as well as signals from app developers are not reliable indicators of 

the privacy risks associated with an app. Also, in keeping with our 

observation, they found that popular Facebook apps tend to request 

more permissions. 

They also found that „Lookalike‟ applications that have names 

similar to popular applications request more permissions than is 

typical. Based on a measurement study across 200 Facebook users, 

                     

. 
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Liu et al. showed that privacy settings in Facebook rarely match 

users‟ expectations. 

To address the privacy risks associated with the use of Facebook 

apps, some studies propose a new application policy and 

authentication dialog. Makridakis et al. [40] use a real application 

named „Photo of the Day‟ to demonstrate how malicious apps on 

Facebook can launch DDoS attacks using the Facebook platform. 

King et al. conducted a survey to understand users‟ interaction with 

Facebook apps. Similarly, Gjoka et al. study the user reach of 

popular Facebook applications. On the contrary, we quantify the 

prevalence of malicious apps, and develop tools to identify 

malicious apps that use several features beyond the required 

permission set.  
App rating efforts. Stein et al. [42] describe Facebook‟s 

Immune System (FIS), a scalable real-time adversarial 

learning system deployed in Facebook to protect users from 

malicious activities. However, Stein et al. provide only a 

high-level overview about threats to the Facebook graph and 

do not provide any analysis of the system. Furthermore, in an 

attempt to balance accuracy of detection with low false 

positives, it appears that Facebook has recently softened their 

controls for handling spam apps [11]. Other Facebook 

applications [5,7,15] that defend users against spam and 

malware do not provide ratings for apps on Facebook. 

Whatapp [23] collects community reviews about apps for 

security, privacy and openness.  

However, it has not attracted much reviews (47 reviews 

available) to date. To the best of our knowledge, we are the 

first to provide a classification of Facebook apps into 

malicious and benign categories. 

 

9. CONCLUSIONS AND FUTURE WORK 
Applications present a convenient means for hackers to 

spread malicious content on Facebook. However, little is 

understood about the characteristics of malicious apps and 

how they operate. In this work, using a large corpus of 

malicious Facebook apps observed over a nine month period, 

we showed that malicious apps differ significantly from 

benign apps with respect to several features. For example, 

malicious apps are much more likely to share names with 

other apps, and they typically request fewer permissions than 

benign apps. Leveraging our observations, we developed 

FRAppE, an accurate classifier for detecting malicious 

Facebook applications. 

Most interestingly, we highlighted the emergence of 

AppNets— large groups of tightly connected applications 

that promote each other. We will continue to dig deeper into 

this ecosystem of malicious apps on Facebook, and we hope 

that Facebook will benefit from our recommendations for 

reducing the menace of hackers on their platform. 
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